• Title/Summary/Keyword: 3T human MRI

Search Result 73, Processing Time 0.03 seconds

Assessment of Malignancy in Human Brain Tumors by in vivo 1H MR Spectroscopy at 3 Tesla

  • Choe, Bo-Young;Baik, Hyun-Man;Chu, Myung-Ja;Kwon, Kang-Sei;Chung, Sung-Taek;Oh, Chang-Hyun;Kim, Sun-I;Park, Chi-Bong;Lee, Hyoung-Koo
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.80-80
    • /
    • 2002
  • Purpose: Three tesla high field MR has been important to those disciplines that are SNR limited, such as MR spectroscopy. Additionally, increased spectral dispersion is critical for minimizing spectral overlap and simplifying resonance structures. The purpose of this study was to assess clinical proton MR spectroscopy (MRS) as a noninvasive method for evaluating brain tumor malignancy at 3T high field system Materials and Methods: Using 3T MRI/MRS system, localized water-suppressed single-voxel technique in patients with brain tumors was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantificated as a relative ratio.

  • PDF

Prevalence of incidental distal biceps signal changes on magnetic resonance imaging

  • Eugene Kim;Joost T.P. Kortlever;Amanda I. Gonzalez;David Ring;Lee M. Reichel
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.3
    • /
    • pp.260-266
    • /
    • 2023
  • Background: Knowledge of the base rate of signal changes consistent with distal biceps tendinopathy on magnetic resonance imaging (MRI) has the potential to influence strategies for diagnosis and treatment of people that present with elbow pain. The aim of this study is to measure the prevalence of distal biceps tendon signal changes on MRIs of the elbow by indication for imaging. Methods: MRI data for 1,306 elbows were retrospectively reviewed for mention of signal change in distal biceps tendon. The reports were sorted by indication. Results: Signal changes consistent with distal biceps tendinopathy were noted in 197 of 1,306 (15%) patients, including 34% of patients with biceps pain, 14% of patients with unspecified pain, and 8% of patients with a specific non-biceps indication. Distal biceps tendon changes noted on radiology reports were associated with older age, male sex, and radiologists with musculoskeletal fellowship training. Conclusions: The finding that distal biceps MRI signal changes consistent with tendinopathy are common even in asymptomatic elbows reduces the probability that symptoms correlate with pathology on imaging. The accumulation of signal changes with age, also independent of symptoms, suggests that tendon pathology persists after symptoms resolve, that some degree of distal biceps tendinopathy is common in a human lifetime, and that tendinopathy may often be accommodated without seeking care. Level of evidence: IV.

Turbo FLASH NRI Using Optimized Flip Angle Pattern: Application to Inversion-Recovery T1-Weighted Imaging (최적화된 Flip Angle Pattern을 사용한 Turbo FLASH MRI: Inversion-Recovery T1-Weighted Imaging에의 응용)

  • Oh, C.H.;Choi, H.J.;Yang, Y.J.;Lee, D.R.;Ryu, Y.C.;Hyun, J.H.;Kim, S.R.;Yi, Y.;Jung, K.J.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.55-56
    • /
    • 1998
  • The 3-D Fast Gradient Echo (Turbo FLASH, Turbo Fast Low Angle Shot) sequence is optimized to achieve a good T1 contrast using variable excitation flip angles. In Turbo FLASH sequence, depending on the contrast preparation scheme, various types of image contrast can be established. While proton density contrast is obtained when using a short repetition time with a short echo time and small flip angles, T1 or T2 weighting can be obtained with proper contrast preparation sequences applied before the above proton density Turbo FLASH sequence. To maximize the contrast to noise ratio while retaining a sharp impulse response (smooth frequency domain response), the excitation flip-angle pattern is optimized through simulation and experiments. The TI (the delay after the preparation sequence which is a 180 degree inversion RF pulse in the IR T1 weighted imaging case), TD (the delay time between the Turbo FLASH sequence and the next preparation), and TR are also optimized fur the best image quality. The proposed 3-D Turbo FLASH provides $1mm\times1mm\times1.5mm$ high resolution images within a reasonable 5-8 minutes of imaging time. The proposed imaging sequence has been implemented in a Medison's Magnum 1.0T system and verified through simulations as well as human volunteer imaging. The experimental results show the utility of the proposed method.

  • PDF

MRI of Hydrosyringomyelia Combined to Hydrocephalus and Occipital Dysplasia in a Dog (개에서 뇌수두증과 후두골 이형성증을 동반한 척수공동증의 자기공명영상학적 평가 1례)

  • Choi Chi-Bong;Bae Chun-Sik;Kim Hwi-Yool
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.664-667
    • /
    • 2005
  • Hydrosyringomyelia is a dilation of the spinal cord central canal. In human it may be caused by congenital malformations such as Dandy-Walker syndrome and Chiari malformations or may be acquired as a result of infection, trauma or neoplasia. Hydrocephalus is an excessive accumulation of cerebrospinal fluid within the ventricles and occipital dysplasia is the dorsal extension of the foramen magnum. Hydrosyringomyelia and hydrocephalus can be confirmed by computed tomography or magnetic resonance imaging (MRI). A 3-year-old male maltese was presented with a history of long-term seizure. Blood examination was all unremarkable. On rostrodorsal-caudoventral oblique radiograph of the skull showed severe occipital dysplasia. On brain sonography through the persistent fontanelle, severe lateral ventriculomegaly was revealed. MRI examination revealed hydrocephalus and hydrosyringomyelia. Diuretic therapy didn't reduce clinical symptoms and surgical decompression was conducted. The dog responded well with ventriculo-peritoneal shunting. MRI is the most superior modality to diagnose hydrocephalus and hydrosyringomyelia, to plan therapy and to determine the prognosis.

Polymeric nanoparticles as dual-imaging probes for cancer management

  • Menon, Jyothi U.;Jadeja, Parth;Tambe, Pranjali;Thakore, Dheeraj;Zhang, Shanrong;Takahashi, Masaya;Xie, Zhiwei;Yang, Jian;Nguyen, Kytai T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.129-140
    • /
    • 2016
  • This article reports the development of biodegradable photoluminescent polymer (BPLP)-based nanoparticles (NPs) incorporating either magnetic nanoparticles (BPLP-MNPs) or gadopentate dimeglumine (BPLP-Gd NPs), for cancer diagnosis and treatment. The aim of the study is to compare these nanoparticles in terms of their surface properties, fluorescence intensities, MR imaging capabilities, and in vitro characteristics to choose the most promising dual-imaging nanoprobe. Results indicate that BPLP-MNPs and BPLP-Gd NPs had a size of $195{\pm}43nm$ and $161{\pm}55nm$, respectively and showed good stability in DI water and 10% serum for 5 days. BPLP-Gd NPs showed similar fluorescence as the original BPLP materials under UV light, whereas BPLP-MNPs showed comparatively less fluorescence. VSM and MRI confirmed that the NPs retained their magnetic properties following encapsulation within BPLP. Further, in vitro studies using HPV-7 immortalized prostate epithelial cells and human dermal fibroblasts (HDFs) showed > 70% cell viability up to $100{\mu}g/ml$ NP concentration. Dose-dependent uptake of both types of NPs by PC3 and LNCaP prostate cancer cells was also observed. Thus, our results indicate that BPLP-Gd NPs would be more appropriate for use as a dual-imaging probe as the contrast agent does not mask the fluorescence of the polymer. Future studies would involve in vivo imaging following administration of BPLP-Gd NPs for biomedical applications including cancer detection.

Neural Activation in the Somatosensory Cortex by Electrotactile Stimulation of the Fingers: A Human fMRI Study

  • Seok, Ji-Woo;Jang, Un-Jung;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.395-405
    • /
    • 2014
  • Objective: The aim of this study is to investigate 1) somatotopic arrangement of the second and third fingers in SI area 2) difference of neural activation in the SI area produced by stimulation with different frequencies 3) correlation between the intensity of tactile perception by different stimulus intensity and the level of brain activation measurable by means of fMRI. Background: Somatosensory cortex can obtain the information of environmental stimuli about "where" (e.g., on the left palm), "what" (e.g., a book or a dog), and "how" (e.g., scrub gently or scrub roughly) to organism. However, compared to visual sense, the neural mechanism underlying the processing of specific electrotactile stimulus is still unknown. Method: 10 right-handed subjects participated in this study. Non-painful electrotactile stimuli were delivered to two different finger tips of right hand. Functional brain images were collected from 3.0T MRI using the single-shot EPI method. The scanning parameters were as follows: TR and TE were 3000, 35ms, respectively, flip angle 60, FOV $24{\times}24cm$, matrix size $64{\times}64$, slice thickness 4mm (no gap). SPM5 was used to analyze the fMRI data. Results: Significant activations produced by the stimulation were found in the SI, SII, the subcentral gyrus, the precentral gyrus, and the insula. In all participants, statistically significant activation was observed in the contralateral SI area and the bilateral SII areas by the stimulation on the fingers but ipsilaterally dominant. The SI area representing the second finger generally located in the more lateral and inferior side than that of the third finger across all the subjects. But no difference in brain area was found for the stimulation of the fingers by different frequencies. And two typical patterns were observed on the relationship between the perceived psychological intensity and the amount of voxels in the primary sensory cortex during the stimulation. Conclusion: It was possible to discriminate the representation sites in the SI by electrotactile stimulation of digit2 and digit3. But we could not find the differences of the brain areas according to different stimulation frequencies from 3 to 300Hz. Application: The results of the study can provide a deeper understanding of somatosensory cortex and offer the information for tactile display for blinds.

Automated Brain Region Extraction Method in Head MR Image Sets (머리 MR영상에서 자동화된 뇌영역 추출)

  • Cho, Dong-Uk;Kim, Tae-Woo;Shin, Seung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.1-15
    • /
    • 2002
  • A noel automated brain region extraction method in single channel MR images for visualization and analysis of a human brain is presented. The method generates a volume of brain masks by automatic thresholding using a dual curve fitting technique and by 3D morphological operations. The dual curve fitting can reduce an error in clue fitting to the histogram of MR images. The 3D morphological operations, including erosion, labeling of connected-components, max-feature operation, and dilation, are applied to the cubic volume of masks reconstructed from the thresholded Drain masks. This method can automatically extract a brain region in any displayed type of sequences, including extreme slices, of SPGR, T1-, T2-, and PD-weighted MR image data sets which are not required to contain the entire brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 of similarity index in comparison with manual drawing.

  • PDF

[ $T_2$ ]-relaxation Time Measurement of ex vivo $^1H$ MR Metabolite Peaks for Evaluation of Human Stomach Cancer

  • Mun Chi-Woong;Choi Ki-Sueng;Shin Oon-Jae;Yang Young-Ill;Chang Hee-Kyung;Hu Xiaoping;Eun Chung-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • In this study, transverse relaxation time (T2) measurement and the evaluation of the characteristics of the spectral peak related to stomach tissue metabolites were performed using ex vivo proton magnetic resonance spectroscopic imaging (MRSI) at 1.5-T MRI/S instruments. Thirty-two gastric tissues resected from 12 patients during gastric cancer surgery, of which 19 were normal tissue and 13 were cancerous tissue, were used to measure the $T_2$ of the magnetic resonance spectroscopy (MRS) peaks. The volume of interest data results from the MRSI measurements were extracted from the proper muscle (MUS) layer and the composite mucosa/submucosa (MC/SMC) layer and were statistically analyzed. MR spectra were acquired using the chemical shift imaging (CSI) point resolved spectroscopy (CSI-PRESS) technique with the parameters of pulse repetition time (TR) and echo times (TE) TR/(TE1,TE2)=1500 msec/(35 msec, 144 msec), matrix $size=24{\times}24$, NA=1, and voxel $size=2.2{\times}2.2{\times}4mm^3$. In conclusion, the measured $T_2$ of the metabolite peaks, such as choline (3.21ppm) and lipid (1.33ppm), were significantly decreased (p<0.01 and p<0.05, respectively) in the cancerous stomach tissue.

Endovaginal and Endorectal Surface Coils for in-ViVo Human MR Imaging and Spectroscopy (자궁경부암 진단용 MR 질내표면코일과 전립선암 진단용 MR 경직장표면코일의 제작 : 인체에서의 MR 영상과 MR 분광)

  • 문치웅;조경식
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.481-491
    • /
    • 1995
  • Endovaginal and endorectal receiver only surface coils were designed for MR imaging (MRI) and $^1H$ MR spectroscopy (MRS) for the uterine cervix and the prostate. The shape of endovaginal coil wire was rectangular with round corner. Size of the coil wire was empirically determined for 7cm and 4cm along the long and short axis, respectively. The coil wire loop was supported by acryl handle and bent about $150^{\circ}$ at one side of the loop considering the average angle of the cervix to the vagina. We called this as a "spoon-type endovaginal coil". The wire of the endorectal coil was made of the flexible materials so that the wire loop became long elliptic shape by pushing the acryl handle into the plastic tube for the comfort of patients when the coil was inserted into the cervix. Then, the shape was maintained to be circle by popping out handle. Conventional spin echo (SE) and fast spin echo (FSE) sequences were used as 71 and 72 weighted imaging sequences, respectively. Matrix size was 128~$256{\times}256$. FOVs for surface coil and body coil were 14cm and 24cm, respectively. 3D volume localized in vivo $^1H$ MR spectroscopy of the human cervix and prostate was performed using PRESS or STEAM localization method with the following parameters . TR=3 sec, TE=135 msec for PRESS or 30 msec for STEAM, NEX=2, NS=48, Sl=2048, and SW=2500 Hz. Using home-built endovaginal and endorectal coils, excellent T1- and T2-images were obtained to visualize early cervical and prostate tumors. 3D volume localized in vivo IH MRS was useful to differentiate the cancerous tissue from the normal tissue.

  • PDF

Magnetic Resonance Imaging Features of Suspected Acute Spinal Cord Infarction in Two Cats (두 마리 고양이에서 발생한 급성 척수 경색의 자기 공명 영상학적 진단 증례)

  • Jung, Sun-Young;Kim, Bo-Eun;Ji, Seo-Yeoun;Yoon, Jung-Hee;Choi, Min-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.30 no.4
    • /
    • pp.320-323
    • /
    • 2013
  • Spinal cord infarction is becoming recognized as an important cause of acute myelopathy in cats. Although the definitive diagnosis is confirmed through postmortem histopathologic examination, MR imaging features provide valuable informations for the diagnosis of spinal cord infarction. The aim of this report is to describe MR findings of acute spinal cord infarction in two cats and to evaluate usefulness of low field MRI (0.3Tesla) as a potential diagnostic tool of acute spinal cord infarction. A cat (unknown age, neutered male mixed breed cat) was referred one day after the acute onset of non-ambulatory spastic tetraparesis and the other cat (a 9-year-old, neutered female domestic short hair cat) was presented due to the acute onset of non-ambulatory paraparesis and one day later paraplegia. The lesions of the MR images were shown on the spinal cord parenchyma over C2 to C6 in case 1 and L2 to L5 in case 2. The MR images in these two cases were characterized by focal intramedullary lesions, mainly involving grey matter which were hyperintense T2 weighted and FLAIR images and hyperintense on DWI and hypointense on ADC map. The MR findings in both cases were highly suggestive of acute spinal cord infarctions, based upon previous reported small animal cases and human cases. In conclusion, based on MR features, together with the history and clinical examination findings, MRI modality can be used as an antemortem tool for the diagnosis of acute spinal cord infarction in cats.