• Title/Summary/Keyword: 3P model

Search Result 5,639, Processing Time 0.034 seconds

Comparison of Multilevel Growth Models for Respiratory Function in Patients with Tracheostomy and Stroke using Cervical Range of Motion Training

  • Kim, SoHyun;Cho, SungHyoun
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.328-336
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of cervical range of motion training on the change in respiratory function growth rate at the group and individual level in stroke patients and stroke patients with tracheostomy tube. Design: A Multilevel Growth Model Methods: 8 general stroke patients and 6 stroke patients who had a tracheostomy tube inserted were subjected to cervical range of motion training 3 times a week for 4 weeks. Force vital capacity (FVC), Forced expiratory volume in the first second (FEV1), Forced expiration ratio (FEV1/FVC) and Manual assist peak cough flow (MPCF) were measured. Data were analyzed using descriptive statistics and multilevel analysis with HLM 8.0. Results: A significant difference was found in the respiratory function analysis growth rate of the entire group (p<0.05), and two groups were added to the research model. The linear growth rate of respiratory function in patients with general stroke increased with the exception of FEV1/FVC (p<0.05). Stroke patients with tracheostomy tube showed a decreasing pattern except for FVC. In particular, MPCF showed a significantly decreased result (p<0.05). Conclusions: This study found that the maintenance of improved respiratory function in stroke patients with tracheostomy tube decreased over time. However, cervical range of motion training is still a useful method for respiratory function in general stroke patients and stroke patients with tracheostomy tube.

Dental imaging characterization of micropigs

  • Lee, Hyeyeon;Choi, Mihyun;Chang, Jinhwa;Jung, Joohyun;Kim, Mieun;Lee, Namsoon;Kim, Junyoung;Choi, Mincheol
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.4
    • /
    • pp.311-317
    • /
    • 2010
  • Recently the micropig has been developed as human disease model. The dental and orofacial region of micropig is similar to that of humans, so it has been used for testing implant materials and techniques. The purpose of this study is on dental image at each age using radiography and computed tomography. Total twenty-two male micropigs, two or three animals of each 1, 3, 5, 7, 9, 12, 18 and 24 months old, were given radiographic examinations. After general anesthesia, extra- and intra-oral radiographic technique and computed tomographic scans were performed to assess the dental characterization of micropigs. The total deciduous dental formula comprised 28 teeth and was depicted as Di 3/3, Dc 1/1, Dp 3/3. The total permanent dental formula comprised 44 teeth and was depicted as I 3/3, C 1/1, P 4/4, M 3/3. Hypodontia of the first premolars was common in the micropig. The permanent teeth erupted from 3 to 24 month after birth. The sequence of eruption of the permanent teeth was M1, P1, I3, C, M2, I1 + P3 + P4, P2, I2, M3. Dental imaging enables visualization of the unerupted teeth and gives more information about the development of the teeth. The growth pattern of the teeth obtained through radiographic and computed tomographic examination provides basic data in the micropig as animal model for dental research.

The Capacity of Multi-Valued Single Layer CoreNet(Neural Network) and Precalculation of its Weight Values (단층 코어넷 다단입력 인공신경망회로의 처리용량과 사전 무게값 계산에 관한 연구)

  • Park, Jong-Joon
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.354-362
    • /
    • 2011
  • One of the unsolved problems in Artificial Neural Networks is related to the capacity of a neural network. This paper presents a CoreNet which has a multi-leveled input and a multi-leveled output as a 2-layered artificial neural network. I have suggested an equation for calculating the capacity of the CoreNet, which has a p-leveled input and a q-leveled output, as $a_{p,q}=\frac{1}{2}p(p-1)q^2-\frac{1}{2}(p-2)(3p-1)q+(p-1)(p-2)$. With an odd value of p and an even value of q, (p-1)(p-2)(q-2)/2 needs to be subtracted further from the above equation. The simulation model 1(3)-1(6) has 3 levels of an input and 6 levels of an output with no hidden layer. The simulation result of this model gives, out of 216 possible functions, 80 convergences for the number of implementable function using the cot(x) input leveling method. I have also shown that, from the simulation result, the two diverged functions become implementable by precalculating the weight values. The simulation result and the precalculation of the weight values give the same result as the above equation in the total number of implementable functions.

On Optimal Replacement Policy for a Generalized Model (일반화된 모델에 대한 최적 교체정책에 관한 연구)

  • Ji Hwan Cha
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • In this paper, the properties on the optimal replacement policies for the general failure model are developed. In the general failure model, two types of system failures may occur : one is Type I failure (minor failure) which can be removed by a minimal repair and the other, Type II failure (catastrophic failure) which can be removed only by complete repair. It is assumed that, when the unit fails, Type I failure occurs with probability 1-p and Type II failure occurs with probability p, $0\leqp\leq1$. Under the model, the system is minimally repaired for each Type I failure, and it is repaired completely at the time of the Type II failure or at its age T, whichever occurs first. We further assume that the repair times are non-negligible. It is assumed that the minimal repair times in a renewal cycle consist of a strictly increasing geometric process. Under this model, we study the properties on the optimal replacement policy minimizing the long-run average cost per unit time.

Study of Formation and Development of Oxygen Deficient Water Mass, Using Ecosystem Model in Jinhae, Masan Bay (생태계 모델을 이용한 진해·마산만에서의 빈산소수괴의 형성 및 발달에 관한 연구)

  • Kim, Yeon-Joong;Kim, Myoung-Kyu;Yoon, Jung-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.41-50
    • /
    • 2010
  • This study established a 3D ecosystem model composed of stratification considering the topographic heat accumulation effect and river outflow, and then applied this model to Jinhae, Masan Bay. Specifically, it reenacted the formation and developmental process of ODW according to the stratification by calculating the kinematic eddy viscosity and eddy diffusion coefficient of the stratification model. The results were used as input data for the ecosystem model and compared with DO, COD, I-N, and I-P, which is the standard index of ocean water quality. As a result, it was determined that COD and T-N are third grade and T-P is second grade standards for a natural environment.

Application of Regression Analysis Model to TOC Concentration Estimation - Osu Stream Watershed - (회귀분석에 의한 TOC 농도 추정 - 오수천 유역을 대상으로 -)

  • Park, Jinhwan;Moon, Myungjin;Han, Sungwook;Lee, Hyungjin;Jung, Soojung;Hwang, Kyungsup;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.187-196
    • /
    • 2014
  • The objective of this study is to evaluate and analyze Osu stream watershed water environment system. The data were collected from January 2009 to December 2011 including water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and discharge. The data were used for principle component analysis and factor analysis. The results are as followes. The primary factors obtained from both the principal component analysis and the factor analysis were BOD, COD, TOC, SS and T-P. Once principal component analysis and factor analysis have been performed with the collected data and then the results will be applied to both simple regression model and multiple regression model. The regression model was developed into case 1 using concentrations of water quality parameters and case 2 using delivery loads. The value of the coefficient of determination on case 1 fell between 0.629 and 0.866; this was lower than case 2 value which fell between 0.946 and 0.998. Therefore, case 2 model would be a reliable choice.The coefficient of determination between the estimated figure using data which was developed to the regression model in 2012 and the actual measurement value was over 0.6, overall. It can be safely deduced that the correlation value between the two findings was high. The same model can be applied to get TOC concentrations in future.

Performance of APACHE IV in Medical Intensive Care Unit Patients: Comparisons with APACHE II, SAPS 3, and MPM0 III

  • Ko, Mihye;Shim, Miyoung;Lee, Sang-Min;Kim, Yujin;Yoon, Soyoung
    • Acute and Critical Care
    • /
    • v.33 no.4
    • /
    • pp.216-221
    • /
    • 2018
  • Background: In this study, we analyze the performance of the Acute Physiology and Chronic Health Evaluation (APACHE) II, APACHE IV, Simplified Acute Physiology Score (SAPS) 3, and Mortality Probability Model $(MPM)_0$ III in order to determine which system best implements data related to the severity of medical intensive care unit (ICU) patients. Methods: The present study was a retrospective investigation analyzing the discrimination and calibration of APACHE II, APACHE IV, SAPS 3, and $MPM_0$ III when used to evaluate medical ICU patients. Data were collected for 788 patients admitted to the ICU from January 1, 2015 to December 31, 2015. All patients were aged 18 years or older with ICU stays of at least 24 hours. The discrimination abilities of the three systems were evaluated using c-statistics, while calibration was evaluated by the Hosmer-Lemeshow test. A severity correction model was created using logistics regression analysis. Results: For the APACHE IV, SAPS 3, $MPM_0$ III, and APACHE II systems, the area under the receiver operating characteristic curves was 0.745 for APACHE IV, resulting in the highest discrimination among all four scoring systems. The value was 0.729 for APACHE II, 0.700 for SAP 3, and 0.670 for $MPM_0$ III. All severity scoring systems showed good calibrations: APACHE II (chi-square, 12.540; P=0.129), APACHE IV (chi-square, 6.959; P=0.541), SAPS 3 (chi-square, 9.290; P=0.318), and $MPM_0$ III (chi-square, 11.128; P=0.133). Conclusions: APACHE IV provided the best discrimination and calibration abilities and was useful for quality assessment and predicting mortality in medical ICU patients.

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee;Jang, Yin-Gi;Kim, Cho-Won;Go, Ryeo-Eun;Lee, Hong Kyu;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.151-161
    • /
    • 2022
  • This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

A Design of Transmission Channel for 40Gb/s backplane Ethernet based on IEEE P802.3ba (IEEE P802.3ba 기반의 40 Gb/s 백플레인 이더넷 전송채널의 설계)

  • Yang, Choong-Reol;Kim, Kwang-Joon;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.637-646
    • /
    • 2010
  • For 40 Gb/s data transmission through electrical backplane trace up to 40 inch length on four layer fire-resistant (FR-4), we have designed the 40 Gb/s backplane channel model consisting of four channel 10 Gb/s. Simulation results show an enhancement of backplane channel characteristics excellent more than requirements specified in IEEE P802.3ba at 10 Gb/s. This paper provides a review of the structures and algorithms used in receive and adaptive equalization for 40 Gb/s backplane Ethernet. The use of this backplane channel model could achieves better receive equalizer at great data rate than 10 Gb/s.

Mathematical modeling of the impact of Omicron variant on the COVID-19 situation in South Korea

  • Oh, Jooha;Apio, Catherine;Park, Taesung
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.22.1-22.9
    • /
    • 2022
  • The rise of newer coronavirus disease 2019 (COVID-19) variants has brought a challenge to ending the spread of COVID-19. The variants have a different fatality, morbidity, and transmission rates and affect vaccine efficacy differently. Therefore, the impact of each new variant on the spread of COVID-19 is of interest to governments and scientists. Here, we proposed mathematical SEIQRDVP and SEIQRDV3P models to predict the impact of the Omicron variant on the spread of the COVID-19 situation in South Korea. SEIQEDVP considers one vaccine level at a time while SEIQRDV3P considers three vaccination levels (only one dose received, full doses received, and full doses + booster shots received) simultaneously. The omicron variant's effect was contemplated as a weighted sum of the delta and omicron variants' transmission rate and tuned using a hyperparameter k. Our models' performances were compared with common models like SEIR, SEIQR, and SEIQRDVUP using the root mean square error (RMSE). SEIQRDV3P performed better than the SEIQRDVP model. Without consideration of the variant effect, we don't see a rapid rise in COVID-19 cases and high RMSE values. But, with consideration of the omicron variant, we predicted a continuous rapid rise in COVID-19 cases until maybe herd immunity is developed in the population. Also, the RMSE value for the SEIQRDV3P model decreased by 27.4%. Therefore, modeling the impact of any new risen variant is crucial in determining the trajectory of the spread of COVID-19 and determining policies to be implemented.