• 제목/요약/키워드: 3D-shell

검색결과 469건 처리시간 0.022초

Effects of Sea Urchin Shell Powder on Volatile Fatty Acids in Poultry Litter: A Field Study

  • Chung, Tae Ho
    • 한국환경과학회지
    • /
    • 제23권2호
    • /
    • pp.331-333
    • /
    • 2014
  • We investigated the effects of sea urchin shell powder on 2 volatile fatty acids, acetic and butyric acid, in poultry litter. A total of 60 1-d-old male broiler chicks (Arbor Acres) were allocated to 2 treatments (basal diet and 1% sea urchin shell powder) with 3 replicates of 10 birds each. During the 4-week experimental period, significant differences in acetic acid and butyric acid concentrations were observed between treatments (P < 0.05), except for acetic acid at 1 week. Additions of 1% sea urchin shell powder resulted in lower acetic and butyric acid concentrations compared to the litter of control birds. We conclude that the sea urchin shell powder used in this study might prove beneficial in reducing environmental pollution caused by poultry litter.

하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석 (Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method)

  • 윤정환;정관수;양동열
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석 (NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER)

  • 이상혁;이명성;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.149-152
    • /
    • 2007
  • The numerical simulations on the heat transfer and flow field were carried out for the improvement of the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The present geometry of the heat exchanger causes poor heat transfer since the air inside shell dose not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle.

  • PDF

빠른 항성풍 거품의 구각형성 시각과 [OIII]선의 형성 (THIN SHELL FORMATION TIME AND [OIII] LINE IN FAST WIND BUBBLE)

  • 최승언;이영진
    • 천문학논총
    • /
    • 제11권1호
    • /
    • pp.91-107
    • /
    • 1996
  • We determine analytically the onset of thin-shell formation time of fast wind bubble with power-law energy injection $E_{in}=E_0t^s$, and power-law ambient density structure, ${\rho}_0(r)={\bar{\rho}}(r/{\bar{r}})^{-{\omega}}$. Thin-shell formation time, $t_{sf}$ can be estimated by minimizing the total time elapsed before the complete cooling of shocked gas. For uniform medium (${\omega}=0$) and constant energy injection (s = 1), the onset of shell formation is found to be at $t_{sf}=5.2{\times}10^3yr$, which agrees Quite well with the results of FCT 1D numerical calculation. We solve the line transfer problem with previous result derived by numerical calculation in order to calculate line profile of [OIII] (${\lambda}=5007{\AA}$) forbidden line. In general, radiative outer shell causes the formation of double peaked line profile. Each peak corresponds to approaching and receeding shells with large velocities. Our line profiles show good agreements with observation of expanding shell structure.

  • PDF

끝이 잘린 원추형 셸의 진동해석 알고리즘의 개발 (Development of Vibrational Analysis Algorithm for Truncated Conical Shells)

  • 여동준
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.58-65
    • /
    • 2005
  • This paper deals with the free vibrations of truncated conical shell with uniform thickness by the transfer influence coefficient method. The classical thin shell theory based upon the $Fl\ddot{u}gge$ theory is assumed and the governing equations of a conical shell are written as a coupled set of first order differential equations using the transfer matrix. The Runge-Kutta-Gill integration and bisection method are used to solve the governing differential equations and to compute the eigenvalues respectively. The natural frequencies and corresponding mode shapes are calculated numerically for the truncated conical shell with any combination of boundary conditions at the edges. And all boundary conditions and the intermediate supports between conical shell and foundation could be treated only by adequately varying the values of the spring constants. Numerical results are compared with existing exact and numerical solutions of other methods.

  • PDF

구형 SiO2@Y2O3: Eu 코어-쉘 복합체 형광체 합성 및 특성 (Synthesis and Characterization of Spherical SiO2@Y2O3 : Eu Core-Shell Composite Phosphors)

  • 송우석;양희선
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.447-453
    • /
    • 2011
  • The monodisperse spherical $SiO_2$ particles were overcoated with $Y_2O_3:Eu^{3+}$ phosphor layers via a Pechini sol-gel process and the resulting $SiO_2@Y_2O_3:Eu^{3+}$ core-shell phosphors were subsequently annealed at $800^{\circ}C$ at an ambient atmosphere. The crystallographic structure, morphology, and luminescent property of core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL). The spherical, nonagglomerated $SiO_2$ particles prepared by a Stober method exhibited a relatively narrow size distribution in the range of 260-300 nm. The thickness of phosphor shell layer in the core-shell particles can be facilely controlled by varying the coating number of $Y_2O_3:Eu^{3+}$ phosphors. The core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors showed a strong red emission, which was dominated by the $^5D_0-^7F_2$ transition (610 nm) of $Eu^{3+}$ ion under the ultraviolet excitation (263 nm). The PL emission properties of $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were also compared with pure $Y_2O_3:Eu^{3+}$ nanophosphors.

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.

3차원 프린팅으로 제작된 다공성 박판 구조물의 굽힘강성 고찰 (Investigation of Bending Stiffness of Porous Shell Structures Fabricated by 3D Printing)

  • 임영은;박근
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.491-497
    • /
    • 2017
  • 최근 3차원 프린팅 기술이 기존의 시작품 제작을 넘어서 직접 제조기술로서의 잠재력을 보이면서 많은 관심을 받고 있다. 3차원 프린팅은 기존의 제조공정으로는 불가능했던 복잡한 형상의 제작이 가능한 장점이 있으며, 이러한 장점으로 인해 경량화 구조물이나 부품이 일체화된 제품의 제조에도 사용되고 있다. 본 연구에서는 이러한 특성을 활용하여 제품의 경량화와 통기성 향상을 위한 다공성 박판 구조를 설계하였고, 유한요소해석을 통해 구조물의 굽힘강성을 비교하였다. 또한 다공성 구조물의 강성 저하를 보완하기 위한 보강설계를 수행하였고, 유한요소해석을 통해 보강구조물의 설계에 따른 굽힘강성 변화를 고찰하였으며 반응표면분석을 통해 설계변수의 최적화를 수행하였다.

FreeCAD를 이용한 스마트폰 셀카봉의 경량화 설계에 관한 연구 (A Research about light-weight design of selfie-rod with FreeCAD)

  • 문권우;황현태
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.541-542
    • /
    • 2015
  • Recently, a popularity of the smartphone is on the rise. And also related services are being created. The growth of the smart technology makes advanced equipment for smartphone accessories. Selfie-rod is one of them. Selfie-rod satisfies people who want to take their own picture at long distance. However, the weight of recent selfie-rods is too heavy that has nice functions. So, we have re-designed new selfie-rod that has light-weight body. First, we observed a selfie-rod and check the reason of the selfie-rod's high weight. The new selfie-rod has a shell and inside, there is a space that it can be light-weight. The shell and space make the selfie-rod lighter. In FreeCAD, we designed shell with a rotation function. Finally, we designed light-weight body selfie-rod with FreeCAD. FreeCAD can be used easily for beginners of CAD. FreeCAD is suitable 3D-design tool for era of 3D-printing.

  • PDF

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.