• Title/Summary/Keyword: 3D-printed molds

Search Result 10, Processing Time 0.031 seconds

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

Fatigue and mechanical properties of laser deposited maraging steel (레이저 적층 마레이징강의 기계적 특성 및 피로 특성)

  • Hong, Seok-Kwan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.36-41
    • /
    • 2018
  • Metal 3D printing is very useful for making the injection molds containing complex conformal cooling channels. The most important issue of the 3D printed molds is cost and life cycle. However, powder bed fusion (PBF) methods are vulnerable to fatigue loading because of the presence of pores and rough surfaces. In the present study, the fatigue test was performed to obtain fatigue analysis input data for predicting the durability of a 3D printed injection mold core. The metal 3D printer used to manufacture the specimen was OPM250L from Sodick, and the metal powder material was maraging steel. The ultrasonic fatigue testing method was adopted for the fatigue test. A key advantage of the ultrasonic fatigue method is that $10^8{\sim}10^9$ long cycle test data or more could be obtained within a relatively short period. Based on the results of the experiment, the effect of heat treatment was negligible. However, there was an apparent difference in durability depending on the presence or absence of the surface treatment.

A study on the fatigue characteristics of SLS 3D printed PA2200 according to uniaxial cyclic tensile loading (SLS 3D 프린터를 이용하여 제작된 PA2200의 단축 반복 인장하중에 따른 피로 특성에 관한 연구)

  • Park, Jun-Soo;Jeong, Eui-Chul;Choi, Han-Sol;Kim, Mi-Ae;Yun, Eon-Gyeong;Kim, Yong-Dae;Won, Si-Tae;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the fatigue behavior and fatigue life characteristics of PA2200 specimens fabricated by SLS 3D printer were studied. Fatigue tests were performed according to the standard specification (ASTM E468) and fatigue life curves were obtained. In order to perform the fatigue test, mechanical properties were measured according to the test speed of the simple tensile test, and the self-heating temperature of the specimen according to the test speed was measured using an infrared temperature measuring camera in consideration of heat generation due to plastic deformation. There was no significant difference within the set test speed range and the average self-heating temperature was measured at 38.5 ℃. The mechanical strength at the measured temperature showed a relatively small difference from the mechanical strength at room temperature. Fatigue test conditions were established through the preceding experiments, and the loading conditions below the tensile strength at room temperature 23 ℃ were set as the cyclic load. The maximum number of replicates was less than 100,000 cycles, and the fracture behavior of the specimens with the repeated loads showed the characteristics of Racheting. It was confirmed that SLS 3D printing PA2200 material could be applied to the Basquin's S-N diagram for the fatigue life curve of metal materials. SEM images of the fracture surface was obtained to analyze the relationship between the characteristics of the fracture surface and the number of repetitions until failure. Brittle fracture, crazing fracture, grain melting, and porous fracture surface were observed. It was shown that the larger the area of crazing damage, the longer the number of repetitions until fracture.

Geometric Evaluation of Patient-Specific 3D Bolus from 3D Printed Mold and Casting Method for Radiation Therapy

  • An, Hyun Joon;Kim, Myeong Soo;Kim, Jiseong;Son, Jaeman;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.32-38
    • /
    • 2019
  • Purpose: The objective of this study is to evaluate the geometrical accuracy of a patient-specific bolus based on a three-dimensional (3D) printed mold and casting method. Materials and Methods: Three breast cancer patients undergoing treatment for a superficial region were scanned using computed tomography (CT) and a designed bolus structure through a treatment planning system (TPS). For the fabrication of patient-specific bolus, we cast harmless certified silicone into 3D printed molds. The produced bolus was also imaged using CT under the same conditions as the patient CT to acquire its geometrical shape. We compared the shapes of the produced bolus with the planned bolus structure from the TPS by measuring the average distance between two structures after a surface registration. Results and Conclusions: The result of the average difference in distance was within 1 mm and, as the worst case, the absolute difference did not exceed ${\pm}2mm$. The result of the geometric difference in the cross-section profile of each bolus was approximately 1 mm, which is a similar property of the average difference in distance. This discrepancy was negligible in affecting the dose reduction. The proposed fabrication of patient-specific bolus is useful for radiation therapy in the treatment of superficial regions, particularly those with an irregular shape.

Evaluation on Hydrophobicity of the Surface of Hardened Cement Paste Produced by PDMS Mold (PDMS 몰드를 이용하여 제작된 시멘트 경화체 표면의 소수성 평가)

  • Jin, Da-Hyung;Liu, Jun-Xing;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.168-169
    • /
    • 2021
  • A hydrophobic surface increases the contact angle between water and cement paste. There are two methods to increase water contact angle, i.e. lowering the surface energy and adjusting the surface roughness of concrete. The hydrophobicity of concrete can be quantitatively evaluated according to the chemical and physical properties of the solid surface. So far, researches have shown the chemical properties of hydrophobic concrete, however it has not covered how to control surface. This study demonstrated the hydrophobic cement paste prepared by low-resolution molds printed with a 3D printer that exhibit rough surface. Thus, we presented the most hydrophobic characteristics of mold.

  • PDF

Comparison of Mechanical Properties between Bulk-fill and Conventional Composite Resin (Bulk-fill과 Conventional 복합레진의 물성비교)

  • Seok, Ujeong;Kim, Jongbin;Kim, Kiseob;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.4
    • /
    • pp.427-434
    • /
    • 2016
  • The aim of this study was to compare the mechanical properties of high viscosity bulk-fill resin composites, $Filtek^{TM}$ Bulk Fill Posterior Restorative (FBF) and $Tetric^{(R)}$ N-Ceram Bulk Fill (TBF), with conventional composite ($Filtek^{TM}$ Z-350 XT, Z-350). The Vickers hardness test which indicates the degree of conversion was performed and the dye penetration test was performed to measure the microleakage which indicates polymerization shrinkage amount. To minimize experimental error, the standardized 3D-printed molds and the bovine teeth were used. Obtained data were analyzed by the Kruskal-Wallis test and Mann-Whitney test with the confidence interval of 95%. In the microhardness test within 1 hour of polymerization, lower surface of FBF and TBF showed significantly lower value than that of Z-350 (p < 0.05). But after 24 hours, the microhardness of FBF had increased and showed no significant difference with Z-350 (p > 0.05). In top and 2 mm depth surface, mean microhardness values were in the following order: Z-350 > FBF > TBF (p < 0.05). The mean microleakage value of TBF was significantly lower than others (p < 0.05). For clinical application of bulk-fill resin composites, caution for applying masticatory forces during 24 hours after polymerization is advised and further studies to decrease microleakage should be conducted.

Strength Characteristics of 3D Printed Concrete According to the Stacking Direction (적층 방향에 따른 3D 프린팅 콘크리트의 강도 특성)

  • Won, Hee-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.632-637
    • /
    • 2021
  • In order to develop future construction technology, research is actively being conducted on concrete construction technology using 3D printing, which is currently in the spotlight as a future industry in domestic and foreign construction industries and academia. However, 3D printing technology is currently being developed and does not meet the requirements for proper construction technology and the properties of concrete materials, and it is difficult to apply in the actual field. Research is also needed for the durability management and maintenance of constructed structures. This work compares the compressive and flexural strength to that produced in conventional molds by dividing the 3D printed concrete output by the laminated X, Y, and Z axes. The compressive strength of a test specimen in the II Z-axis test direction was 8-10% higher than that of the other test directions (I and III Y axes and X axis). The strength was 4% lower than that of a molded test specimen. As of 28th of the age, the bending strength of the test specimen in the Z-axis direction was 5 to 7% higher than that of the I and III Y, and X-axis test directions, and the strength was 2% lower than that of the molded test specimen.

Fabrication of Face Molds and Silicone Masks using 3D Printing (3D 프린팅을 이용한 얼굴 몰드 및 실리콘 마스크 제작)

  • Choi, Yea-Jun;Shin, Il-Kyu;Choi, Kanghyun;Choi, Soo-Mi
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.516-523
    • /
    • 2016
  • For old-age makeups, makeup artists first make a mold cast of an actor's face using plaster and then sculpt wrinkles in clay on the plaster mold. After finishing the clay sculpture, its negative plaster mold is fabricated and silicone skin patches are finally made for application to the actor's face. This process takes a few days and is tedious for actors and makeup artists. With recent advances in 3D printing and scanning technology, it is becoming easier to scan and fabricate 3D faces. This paper presents a new pipeline composed of facial scanning, interactive wrinkle modeling, and mold printing stages to easily and efficiently fabricate silicone masks for old-age makeups without the use of plaster and clay. An intuitive sketch interface based on a normal map is proposed for the creation of wrinkles in real time, even with a high-resolution face model. Then the geometry of the final wrinkles is reconstructed using a depth map and the negative mold of the wrinkled face is printed. We also show that the presented pipeline can fabricate a silicone mask more conveniently than the traditional one that consists of pouring silicone into the prepared negative mold and then overlapping the mold with the original positive one.

Shear Bond Strengths of Dentin Bonding Agent containing 0.2% Chlorhexidine (클로르헥시딘을 함유한 상아질 결합제의 전단결합강도)

  • Kim, Jinhyock;Kim, Kiseob;Kim, Jongsoo;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • The purpose of this study is to investigate shear bond strengths of $Peak^{(R)}$ Universal Bond (Ultradent, USA) containing 0.2% chlorhexidine in bovine dentin. Total of 30 bovine teeth were divided into three groups, 10 teeth each. Before comparing and evaluating shear bond strength, in group I, $Adper^{TM}$ Single Bond Universal (3M ESPE, USA) was applied, in group II, processing with $Consepsis^{(R)}$ (Ultradent, USA) was followed by applying $Adper^{TM}$ Single Bond Universal, and in group III, $Peak^{(R)}$ Universal Bond was applied and filled with $Filtek^{TM}$ Z-350 XT (3M/ESPE, USA) shade B3. As a result, processing with $Consepsis^{(R)}$ after acid etching showed no statistically significant influence on shear bond strength of dentin (p > 0.05). The shear bond strength of with or without $Consepsis^{(R)}$ on $Adper^{TM}$ Single Bond Universal and that of $Peak^{(R)}$ Universal Bond showed statistically significant difference (p < 0.05).

An Experiment on the Manufacture of Free-Form Panel for Analysis of the Requirements of Concrete Extrusion Nozzles (콘크리트 압출 노즐의 요구사항 분석을 위한 비정형 패널 제작 실험)

  • Kim, Hye-Kwon;Youn, Jong-Young;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.91-92
    • /
    • 2023
  • With the development of technology, interest in the implementation of free-form buildings is increasing, and research on producing free-form panels is being conducted accordingly. Since free-form buildings are curved and consist of geometric shapes, there are many problems with the production technology of free-form panels that implement them. Due to the inability to reuse molds, the cost of disposal of construction waste and waste of manpower for assembly increase the construction period and construction cost. To improve these limitations, a 3D printed concrete nozzle for FCP production was developed. However, this technology is not quantitatively extruded according to the shape of the panel, and there is a problem that residues are generated. Therefore, an free-form panel extrusion experiment was conducted to analyze the limitations of existing nozzles and to analyze the requirements for the development of new concrete extrusion nozzles. Existing nozzles were unable to be quantitatively extruded, resulting in errors. Due to the weak pressure of the screw and the inability to adjust the internal pressure, detailed extrusion speed control was impossible, and residue generation in the opening and closing device seemed to be the cause. Therefore, a pump capable of quantitative concrete pressure transfer and a pressure control device for easy extrusion of concrete are required. In addition, it is judged that it is necessary to develop an opening and closing device and an extrusion device that do not generate residues. The results of this study are expected to provide information for FCP production and production and to be a basic study of technologies necessary for the production of free-form building panels.

  • PDF