• Title/Summary/Keyword: 3D-Touch

Search Result 140, Processing Time 0.031 seconds

An Approach to implement Virtual 3D-Touch using 2D-Touch based Smart Device through User Force Input Behavior Pattern (2D-Touch 스마트 디바이스에서 사용자 행동 패턴 분석을 통한 가상 3D-Touch 구현을 위한 방법)

  • Nam, ChoonSung
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.41-51
    • /
    • 2016
  • The appearance of 3D-Touch interface provided the basis of a new interaction method between the users and the mob ile interface. However, only a few smartphones provide 3D-Touch features, and most of the 2D-Touch devices does not provide any means of applying the 3D-Touch interactions. This results in different user experiences between the two interaction methods. Thus, this research proposes the Virtual Force Touch method, which allows the users to utilize the 3D-Touch Interface on 2D-Touch based smart devices. This paper propose the suitable virtual force touch mechanism that is possible to realize users' inputs by calculating and analysis the force touch area of users' finger. This proposal is designed on customized smartphone device which has 2D-Touch sensors.

Two-Point Touch Enabled 3D Touch Pad (2개의 터치인식이 가능한 3D 터치패드)

  • Lee, Yong-Min;Han, Chang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.578-583
    • /
    • 2017
  • This paper presents a 3D touch pad technology that uses force touch sensors as a next-generation method for mobile applications. 3D touch technology requires detecting the location and pressure of touches simultaneously, as well as multi-touch function. We used metal foil strain gauges for the touch recognition sensor and detected the weak touch signals using Wheatstone bridge circuit at each strain gauge sensor. We also developed a touch recognition system that amplifies touch signals, converts them to digital data through a microprocessor, and displays the data on a screen. In software, we designed a touch recognition algorithm with C code, which is capable of recognizing two-point touch and differentiating touch pressures. We carried out a successful experiment to display two touch signals on a screen with different forces and locations.

Study on Behavioral Characteristics of 3D Touch in Smartphone

  • Oh, Euitaek;Hong, Jiyoung;Cho, Minhaeng;Choi, Jinhae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.551-568
    • /
    • 2016
  • Objective: The objective of this study is to identify the difference in the press behavior characteristics of 3D Touch, which is a new touch interaction of smart phones, and the existing 'Tap and Long Press' touch interaction, and to examine behavior changes upon feedbacks. Background: Since 3D Touch is similar to the existing 'Tap and Long Press' touch interactions in terms of press behavior, which is likely to cause interference, it is necessary to conduct a preliminary study on behavior characteristics of touch interactions. Method: In utilization of smart phones with the 3D Touch function to measure press behavior characteristics of touch interaction, an experiment was conducted where 30 subjects were given a task to press 30 buttons of touch interactions on the screen. During the experiment, two press behavior characteristics-maximum touch pressure and press duration-were analyzed. To grasp changes in behaviors upon feedbacks, the task was carried out in a condition where there was no feedback and in a condition where there were feedbacks of specific critical values. Results: While there was no feedback given, subjects tended to press with much strength (318.98gf, 0.60sec) in the case of 3D Touch, and press the Long Press button for a while (157.12gf, 1.10sec) and press the Tap button with little strength only for a short moment (37.92gf, 0.10sec). 3D Touch and Long Press had an area of intersection in time, but when feedbacks of specific critical values were given, there were behavior calibration effects to adjust the press behavior characteristics of 3D Touch and Long Press. Conclusion: Although interferences are expected between 3D Touch and Long Press due to the similarity of press behaviors, feedbacks induce behavior calibration. Hence, once feedbacks were provided with 3D Touch operated in an appropriate condition of critical pressure, interference between two motions can be minimized. Application: The findings of this study are expected to be utilized as a basis for the values of optimal critical pressure, at which users can easily distinguish 3D Touch from Long Press which is the existing touch interaction.

Subjective Wear Test and Fit of Women's Sports Underwear Made of Cool-Touch Fabric (냉감소재로 제작한 여성 스포츠 언더웨어의 피트성과 착용시 주관적 평가)

  • Kim, Soyoung;Lee, Heeran;Choi, Jiyoung;Hong, Kyunghi
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.4
    • /
    • pp.505-514
    • /
    • 2017
  • Although studies on the development of cool touch fabrics have been conducted widely, the effects of fitted pattern on enhancing the cooling sensation are insufficient. To investigate the effect of cool-touch fabric and fit of women's sports underwear, 3D and 2D patterns of sleeveless top and sports leggings were constructed. The performance of cool touch was tested by the Qmax value and wear test with nine subjects. Objective fit evaluation was observed by 3D virtual clothing using Clo software. Subjects rated wearing sensation such as 'cooling sensation, fit, wear comfort and preferences of purchase' using Likert's scale in the environmental chamber at $25^{\circ}C$, 45 %RH. The Qmax value of the cool touch fabric was higher than that of the PET fabric, which was well reflected in 'cooling sensation', especially in the case of a tight-fitted 3D pattern. The cooling sensation of the cool-touch fabric was not significantly elevated with 3D tight pattern as long as the size of the 2D pattern was similar to that of 3D pattern. However, the purchase preference was highly correlated with 3D fit and wear comfort.

Large scale interactive display system for touch interaction in stereopsis (입체 영상에서 터치 인터랙션을 위한 대규모 인터랙티브 디스플레이 시스템)

  • Kang, Maeng-Kwan;Kim, Jung-Hoon;Jo, Sung-Hyun;Joo, Woo-Suck;Yoon, Tae-Soo;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.252-255
    • /
    • 2010
  • In this thesis, it suggests large scale interactive display system which is able to various touch interaction and bases on infrared LED BAR and using 3D. Interaction layer formed on space from screen which is able to feel 3D using suggested IR LED BAR. It gets the image in real time what is composed in interaction section using infrared camera with band pass filter. The image finds touch interaction coordinate through image processing module and saves as packet. It send packet to server through network data communication. It analyze packet by metaphor analysis module and save as metaphor event and send it to contents. On contents, it practices to metaphor event result in real time so it makes use touch interaction in stereopsis. According to this process, it does not need touch the screen at firsthand but it is possible system and touch interaction so touch interaction is possible while use 3D.

  • PDF

A Study on the Implementation of Multi-touch model using a Haptic Device in Virtual Reality (가상현실에서 Haptic 디바이스를 활용한 멀티터치 모델 구현에 관한 연구)

  • Kang, Im-Chul;Kim, Beom-Seok;Hur, Gi-Taek;Ko, Young-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.83-90
    • /
    • 2010
  • In this paper, we use VR technologies including touch processing technologies and haptic devices to offer touch of fish objects to users. The Omni, a kind of haptic device and made by Sensable Inc., is used to implement multi touch model in VR space. In addition, Matlab/Simulink and proSENSE Virtual Touch Toolbox of Handshake Inc., are used as programing tools. Functions needed to describe the movement of x, y, and z axis respectively are applied to delineate the natural movement of fish objects modeled with 3D. Such movements offer realistic physical interactions to two users controlling multi point respectively. In experiment, to perceive the appearance of 3D object by touch and to feel the respiration by touch are well conducted. We also verify that it is possible to develop games or contents through multi participation in VR Space by using multi point.

The Development of 3D based On-Machine Measurement Operating System (3D 기반의 기상측정 운영시스템 개발)

  • 윤길상;최진화;조명우;김찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.145-152
    • /
    • 2004
  • This paper proposed efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software based 3D modeler for inspection on machine and it is interfaced tool machine with RS232C. The software is composed of two inspection modules that one is touch probe operating module and the other is laser displacement sensor operating module. The module for touch probe has need of inspection feature that extracted it from CAD data. Touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of laser displacement sensor is used inspection for profile and very small hole. An Advantage of this inspection method is to be able to execute on-line inspection during machining or after it. The efficiency of proposed system which can predict and definite the machining errors of each process is verified, so the developed system is applied to inspect the mold-base(cavity, core).

A Study on the Implementation of Nanta Music using a Haptic Device in Virtual Reality (가상현실에서 Haptic 디바이스를 활용한 난타 음악 구현에 관한 연구)

  • Ko, Young-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This paper investigates the possibility of exploiting haptic force-feedback technology for interacting with Nanta music. We use VR technologies including touch processing technologies and haptic devices to offer touch of cylinder objects and cup object to users. Haptic device is used to implement touch model in VR space. Matlab/Simulink and proSENCE Virtual Touch Toolbox of Handshake Inc. for experiment, are used as programing tools. Function needed to describe the movement of x, y, and z axis respectively are applied to delineate the natural movement of water in cup object modeled with 3D. A certain amount of water in cup object has the difference of sounds. In experiment, to perceive the appearance of 3D object by touch and to feel the tactile by touch are conducted with the effect of sound on Haptic perception. We also verify that it is possible to develop games or contents in VR space by using point.

A 3D Parametric CAD System for Smart Devices (스마트 디바이스를 위한 3D 파라메트릭 CAD 시스템)

  • Kang, Yuna;Han, Soonhung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2014
  • A 3D CAD system that can be used on a smart device is proposed. Smart devices are now a part of everyday life and also are widely being used in various industry domains. The proposed 3D CAD system would allow modeling in a rapid and intuitive manner on a smart device when an engineer makes a 3D model of a product while moving in an engineering site. There are several obstacles to develop a 3D CAD system on a smart device such as low computing power and the small screen of smart devices, imprecise touch inputs, and transfer problems of created 3D models between PCs and smart devices. The author discusses the system design of a 3D CAD system on a smart device. The selection of the modeling operations, the assignment of touch gestures to these operations, and the construction of a geometric kernel for creating both meshes and a procedural CAD model are introduced. The proposed CAD system has been implemented for validation by user tests and to demonstrate case studies using test examples. Using the proposed system, it is possible to produce a 3D editable model swiftly and simply in a smart device environment to reduce design time of engineers.

Haptic Rendering Technology for Touchable Video (만질 수 있는 비디오를 위한 햅틱 렌더링 기술)

  • Lee, Hwan-Mun;Kim, Ki-Kwon;Sung, Mee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.691-701
    • /
    • 2010
  • We propose a haptic rendering technology for touchable video. Our touchable video technique allows users for feeling the sense of touch while probing directly on 2D objects in video scenes or manipulating 3D objects brought out from video scenes using haptic devices. In our technique, a server sends video and haptic data as well as the information of 3D model objects. The clients receive video and haptic data from the server and render 3D models. A video scene is divided into small grids, and each cell has its tactile information which corresponds to a specific combination of four attributes: stiffness, damping, static friction, and dynamic friction. Users can feel the sense of touch when they touch directly cells of a scene using a haptic device. Users can also examine objects by touching or manipulating them after bringing out the corresponding 3D objects from the screen. Our touchable video technique proposed in this paper can lead us to feel maximum satisfaction the haptic-audio-vidual effects directly on the video scenes of movies or home-shopping video contents.