• Title/Summary/Keyword: 3D-Scanning

Search Result 1,488, Processing Time 0.025 seconds

Accuracy of virtual models in the assessment of maxillary defects

  • Kamburoglu, Kivanc;Kursun, Sebnem;Kilic, Cenk;Ozen, Tuncer
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Materials and Methods: Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) $60{\times}60mm$ FOV, $0.125mm^3$ ($FOV_{60}$); 2) $80{\times}80mm$ FOV, $0.160mm^3$ ($FOV_{80}$); and 3) $100{\times}100mm$ FOV, $0.250mm^3$ ($FOV_{100}$). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. Results: A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. Conclusion: In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.

A Study of Liver Scan using $^{113m}In$ Colloid ($^{113m}In$ 교질(膠質)에 의(依)한 간주사(肝走査)에 관(關)한 연구(硏究))

  • Koh, Chang-Soon;Rhee, Chong-Heon;Chang, Ko-Chang;Hong, Chang-Gi D.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.3 no.1
    • /
    • pp.83-99
    • /
    • 1969
  • There have been reported numberous cases of liver scanning in use of $^{198}Au$ colloid by many investigators, however, one in use of $^{113m}In$ colloid has not been reported as yet in this country. The dose of $^{113m}In$ for high diagnostic value in examination of each organ was determined and the dignostic interpretability of liver scanning with the use of $^{113m}In$ was carefully evaluated in comparison with the results of the liver scanning by the conventionally applied radioisotopes. The comparative study of both figures of liver scannings with the use of $^{113m}In$ colloid and $^{198}Au$ colloid delivered following results: 1. The liver uptake rate and clearance into peripheral blood were accentuated more in case of $^{113m}In$ colloid than in case of $^{198}Au$ colloid. 2. The interpretability of space occupying lesion in liver scanning with $^{113m}In$ was also superior to one with $^{198}Au$. 3. The figure of liver scanning with $^{113m}In$ colloid corresponds not always to the figure with $^{198}Au$. This difference can be explained by differences of phagocytic ability of reticuloendotherial system within liver. 4. In the liver scanning with $^{113m}In$ colloid, the spleen is also visualized even in normal examinee. 5. In the cases of disturbed liver function, uptake is more decreased in use of $^{113m}In$ colloid than in $^{198}Au$, in the spleen, however, the way is contrary. 6. With use of $^{113m}In$ colloid, the time required for scanning could be shortened in comparison with $^{198}Au$. 7. The filtration of $^{113m}In$ colloid for scanning prior to human administration gives an expectation for better scanning figure.

  • PDF

A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method (열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구)

  • Shim, Hae-Ri;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1229-1235
    • /
    • 2015
  • Scaffold fabrication technology using a 3D printer was developed for damaged bone tissue regeneration. A scaffold for bone tissue regeneration application should be biocompatible, biodegradable, and have an adequate mechanical strength. Moreover, the scaffold should have pores of satisfactory quantity and interconnection. In this study, we used the polymer deposition system (PDS) based on fused deposition modeling (FDM) to fabricate a 3D scaffold. The materials used were polycaprolactone (PCL) and alginic acid sodium salt (sodium alginate, SA). The salt-leaching method was used to fabricate dual pores on the 3D scaffold. The 3D scaffold with dual pores was observed using SEM-EDS (scanning electron microscope-energy dispersive spectroscopy) and evaluated through in-vitro tests using MG63 cells.

Modeling Technology on Free-form Surface of a New Military Personal Head using Quick Surface Method (퀵서피스기법을 이용한 신장병 두상의 자유곡면 모델링 기술)

  • Lee, Yong-Moon;Hwang, Tae-Son;Kim, Hun;Nam, Hee-Tae;Lee, Kee-Hwan;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.170-176
    • /
    • 2018
  • Recently, weapon system requires personal protection products due to the explosion of rapid-fire explosion, which is considered to be multi threat in modernization, complication and war against terrorism. However, the conventional Korean military bullet protection helmets are not suitable for wearing convenience and combatant interoperability in terms of ergonomic. In this paper, we propose a suitable 3D Scanning method for the head, and compare the measured 3D dimension with the existing 2D measurement value to identity the reliability. Reverse engineered soldier head using the quick surface method was realized with a perfect free-form surface and satisfactory tolerance range (${\pm}0.2mm$). Through the comparison of 3D and 2D measured head dimensions, the absolute error value was 0.73 mm on average and relative error was 0.35 %, confirming the high accuracy of the 3D scan modeling. Also, quick surface method using 3D scanner is suggested a fast and accurate skill for ergonomics in obtaining the head modeling needed for military's personal bullet protection helmet design.

Identification of the Relationship between Surface Variations of Lower Body Parts by Movement Using 3D Scan Data - A Focus on Women Aged 20 to 24 Years - (3D 스캔데이터를 활용한 동작에 따른 하반신 주요 부위별 체표면 변화 및 상관관계 - 20-24세 여성을 중심으로 -)

  • Lee, So-Young;Kim, Ji Min
    • Journal of the Korean Society of Costume
    • /
    • v.67 no.3
    • /
    • pp.81-98
    • /
    • 2017
  • The purpose of this study is to provide basic information for the development of pants patterns with a high level of fit and comfort through calculating surface variations of lower body parts by movement, grouping them into factors, and analyzing how their surface variations link to one another. The achieved results will help determine essential elements for constructing pants patterns, such as key measurements of lower body parts, the amount of ease values and selection of fabrics, which should be taken into consideration for allowing better movement in clothing. The study required lower body 3D scanning of women for analysis, and 13 women between the ages of 20-24 participated in the scanning, which was done by using Artec Eva 3D scanner. Their scanned data were digitalized and converted to measure the values of their lower body surface length and girth in pre-determined positions such as walking, stair climbing and sitting on a chair. These measurements have been statistically analyzed through SPSS 21.0 to obtain the average amounts and rates of extension for each of the measurement item. Some of the highlighted study results are as follows: The surface length and girth measurements were grouped into 4 factors based on their average extension rates. The results from correlation analysis between measurement items within each factor demonstrated that common items linked to all the changes in the values of other items in the three movements. But in most cases, items were not always correlated with each other for different movements. The results also showed that there were correlations between girth measurements, length measurements, and girth and length measurements. Therefore, key measurements for daily pants should be determined within reasonable estimations between relevant measurement items, while the measurements for work pants, which often withstand certain postures or repetitive movements, may require measurement items that are appro priate for, and closely related to, certain movements or tasks.

3D Animation Body Profiles from Full-body Scans and Motion Capture (풀바디 스캔과 모션 캡처를 활용한 3D 애니메이션 바디 프로필)

  • Jaewon Song;Sang Wook Chun;Subin Lee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2023
  • This paper proposes a 3D animated body profile using 3D body scanning and motion capture devices. Users can create their own personalized body profiles with animation by performing 3D scans for a predetermined set of poses. To achieve this, a template animation was obtained through motion capture for a series of poses, and the acquired 3D scan data from users was mapped to the key poses of the animation using Pose-space deformer. The resulting 3D animated body profiles provide users with greater satisfaction compared to traditional static 2D images or 3D scan data.

Estimation of Displacements Using Artificial Intelligence Considering Spatial Correlation of Structural Shape (구조형상 공간상관을 고려한 인공지능 기반 변위 추정)

  • Seung-Hun Shin;Ji-Young Kim;Jong-Yeol Woo;Dae-Gun Kim;Tae-Seok Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • An artificial intelligence (AI) method based on image deep learning is proposed to predict the entire displacement shape of a structure using the feature of partial displacements. The performance of the method was investigated through a structural test of a steel frame. An image-to-image regression (I2IR) training method was developed based on the U-Net layer for image recognition. In the I2IR method, the U-Net is modified to generate images of entire displacement shapes when images of partial displacement shapes of structures are input to the AI network. Furthermore, the training of displacements combined with the location feature was developed so that nodal displacement values with corresponding nodal coordinates could be used in AI training. The proposed training methods can consider correlations between nodal displacements in 3D space, and the accuracy of displacement predictions is improved compared with artificial neural network training methods. Displacements of the steel frame were predicted during the structural tests using the proposed methods and compared with 3D scanning data of displacement shapes. The results show that the proposed AI prediction properly follows the measured displacements using 3D scanning.

Stencil-based 3D facial relief creation from RGBD images for 3D printing

  • Jung, Soonchul;Choi, Yoon-Seok;Kim, Jin-Seo
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.272-281
    • /
    • 2020
  • Three-dimensional (3D) selfie services, one of the major 3D printing services, print 3D models of an individual's face via scanning. However, most of these services require expensive full-color supporting 3D printers. The high cost of such printers poses a challenge in launching a variety of 3D printing application services. This paper presents a stencil-based 3D facial relief creation method employing a low-cost RGBD sensor and a 3D printer. Stencil-based 3D facial relief is an artwork in which some parts are holes, similar to that in a stencil, and other parts stand out, as in a relief. The proposed method creates a new type of relief by combining the existing stencil techniques and relief techniques. As a result, the 3D printed product resembles a two-colored object rather than a one-colored object even when a monochrome 3D printer is used. Unlike existing personalization-based 3D printing services, the proposed method enables the printing and delivery of products to customers in a short period of time. Experimental results reveal that, compared to existing 3D selfie products printed by monochrome 3D printers, our products have a higher degree of similarity and are more profitable.

Temporal adaptive 3D subband image sequence coding technique (시간 적응 3차원 subband 부호화 기법)

  • 김용관;김인철;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1096-1108
    • /
    • 1996
  • In this paper, we propose a temporal adaptive tranform 3D SBC coder with motion compensation, exploiting redundancy in the temporal domain. We propose a temporal adaptivity measure, by which the R-D optimal temporal transform can be chaosen. The base temporal subband frame is coded using H.261-like MC-DCT coder, while the higher temporal subband frames are coded using the 2D adaptive wavelet packet bases, considering the various energy distribution which results from the temporal variation. In encoding the subbands, we employ adaptive scanning methods, uniform step-size quantization with VLC, and coded/not-coded flag reduction technique using the quadtree structure. From the simulation results, the proposed adaptive 3D subband coder shows about 0.29~3.14 dB gain over the H.261 and the fixed 3D subband coder techniques.

  • PDF

Tunnel Convergence and Crown settlement using 3D Laser Scanning (고밀도 레이저 측량을 이용한 터널의 천단 및 내공 변위 관측)

  • Lee Ja-One;Jang Sang-Kyu;Lim Young-Bin;Moon Doo-Youl;Yun Bu-Yeol
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.507-512
    • /
    • 2006
  • There are many risks in constructing tunnel-structure. To prevent these risks from occurring and secure safety, the precise and rapid survey of inside displacement of the tunnel is required. But nowadays the measurement of the crown settlement, convergency, and surface settlement depends on general kinds of method which use total station or level. In the way to provide data about maintaining structure according to recent improvement and progress of measuring technology, 3D laser scanning is used. It solves the problem of reliability in measuring displacement of existing structure, provides material that enables to estimate shape change of structure visually, and makes it possible to deliberate speedy countermeasure. By this three dimensioning it is possible to make efficient use of structure maintenance and field measurement

  • PDF