• Title/Summary/Keyword: 3D-Scanning

Search Result 1,479, Processing Time 0.027 seconds

Constraint Relaxation using User Interaction in Reactive Scheduling Environment (동적 스케줄링 문제에서 사용자 상호작용을 이용한 제약조건 완화)

  • Lee, Hoon;Jung, Jong Jin;Jo, Geun Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.132-142
    • /
    • 1998
  • In optical scanning holography, 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electrical signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. This technique can be applied to 3-D optical remote sensing especially for identifying flying objects. In this paper, we first briefly review optical scanning holography and analyze the resolution achievable with the system. We then present mathematical expression of real and virtual image which are responsible for holographic image reconstruction by using Gaussian beam profile.

  • PDF

Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel (하도 내 식생의 물리적 구조를 산정하기 위한 3차원 지상 레이저 스캐닝의 도입 및 활용)

  • Jang, Eun-kyung;Ahn, Myeonghui;Ji, Un
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 2020
  • Recently, a method that applies laser scanning (LS) that acquires vegetation information such as the vegetation habitat area and the size of vegetation in a point cloud format has been proposed. When LS is used to investigate the physical shape of vegetation, it has the advantage of more accurate and rapid information acquisition. However, to examine uncertainties that may arise during measurement or post-processing, the process of adjusting the data by the actual data is necessary. Therefore, in this study, the physical structure of stems, branches, and leaves of woody vegetation in an artificially formed river channel was manually investigated. The obtained results then compared with the information acquired using the three-dimensional terrestrial laser scanning (3D TLS) method, which repeatedly scanned the target vegetation in various directions to obtain relevant information with improved precision. The analysis demonstrated a negligible difference between the measurements for the diameters of vegetation and the length of stems; however, in the case of branch length measurement, a relatively more significant difference was observed. It is because the implementation of point cloud information limits the precise differentiation between branches and leaves in the canopy area.

Contemporary Diagnosis and Orthodontic Treatment in Orthognathic Surgery (임상가를 위한 특집 3 - 악교정 수술환자의 진단과 교정치료)

  • Baik, Hyoung-Seon
    • The Journal of the Korean dental association
    • /
    • v.50 no.2
    • /
    • pp.72-82
    • /
    • 2012
  • Recently in treatment planning for orthognathic surgery, 3-dimensional analysis using CBCT can give more detailed information that cannot be achieved with 2-dimensional cephalograms. Also, laser Scanning and 3D camera can show 3-dimensional information on soft tissue changes as well as hard tissue changes in orthognathic surgery patients. In other words, soft tissue changes in lateral facial area as well as mid facial area can be quantitatively calculated. To bring out the best results from orthognathic surgery, close interaction between orthodontist and oral surgeon is needed and well treated pre-surgical orthodontics can simplify orthognathic surgical plan that also results in good long-term stability. In surgery-first cases, more thoughtful diagnosis and pre-operative preparation will be needed to prevent complicated problems.

Comb-spacing-swept Source Using Differential Polarization Delay Line for Interferometric 3-dimensional Imaging

  • Park, Sang Min;Park, So Young;Kim, Chang-Seok
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • We present a broad-bandwidth comb-spacing-swept source (CSWS) based on a differential polarization delay line (DPDL) for interferometric three-dimensional (3D) imaging. The comb spacing of the CSWS is repeatedly swept by the tunable DPDL in the multiwavelength source to provide depth-scanning optical coherence tomography (OCT). As the polarization differential delay of the DPDL is tuned from 5 to 15 ps, the comb spacing along the wavelength continuously varies from 1.6 to 0.53 nm, respectively. The wavelength range of various semiconductor optical amplifiers and the cavity feedback ratio of the tunable fiber coupler are experimentally selected to obtain optimal conditions for a broader 3-dB bandwidth of the multiwavelength spectrum and thus provide a higher axial resolution of $35{\mu}m$ in interferometric OCT imaging. The proposed CSWS-OCT has a simple imaging interferometer configuration without reference-path scanning and a simple imaging process without the complex Fourier transform. 3D surface images of a via-hole structure on a printed circuit board and the top surface of a coin were acquired.

Trends in High-Resolution 3D Data Generation Technologies (고해상도 3D 데이터 생성 기술 분석 및 연구 동향)

  • Kim, H.J.;Choi, J.Y.;Oh, A.R.;Jee, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.3
    • /
    • pp.64-73
    • /
    • 2022
  • As the COVID-19 pandemic has decreased face-to-face communication in everyday life, our interest in cultural communication via virtual world has grown significantly. In particular, the demand for applications that use three-dimensional (3D) data generation technology such as virtual reality, augmented reality, virtual performances, and realistic content is rapidly increasing in the entertainment and gaming industries. Additionally, improved computing capacity has increased the demand for high-resolution data. This study investigates the trends in 3D scanning and photogrammetry technologies that can support high-quality 3D data generation and introduces the high-resolution 3D data generation technology developed and reported in ETRI.

Data Extraction for Remodelling of Building Interior Using 3D Laser Scanning (3D 레이저스캐닝을 이용한 건물 내부의 리모델링 데이터 추출)

  • Lee, Jin-Duk;Lee, Jae-Bin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.315-317
    • /
    • 2008
  • 본 연구에서는 리모델링 대상 백화점 건물의 내부를 지상레이져스캐너(z-f 레이저 장비)에 의해 3D 데이터를 취득하고 일련의 처리과정을 통하여 건물 내부의 리모델링 시공을 위한 단면자료 추출 과정 등에 대하여 제시하였다. 리모델링시공을 위해서는 건물내부에 대한 정확한 도면이 필요하며, 시공당시의 설계도면이 분실 또는 훼손되었든지 실제치수가 당초 설계와 다른 경우 복잡한 내부를 측량해야 하는데 이 경우 레이저 스캐닝 및 관련 소프트웨어에 의한 도면데이터 추출과정을 제시하였다.

  • PDF

Wavelet based Embedded Video Coding with 3-D Block Partition (3-D 블록분할을 이용하는 웨이브렛 기반 임베디드 비디오 부호화)

  • 양창모;임태범;이석필
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.133-136
    • /
    • 2003
  • In this paper, we propose a low bit-rate embedded video coding scheme with 3-D block partition in the wavelet domain. The proposed video coding scheme includes multi-level three dimensional dyadic wavelet decomposition, raster scanning within each subband, partitioning of blocks, and adaptive arithmetic entropy coding. Although the proposed video coding scheme is quite simple, it produces bit-streams with good features, including SNR scalability from the embedded nature. Experimental results demonstrate that the proposed video coding scheme is quite competitive to other good wavelet-based video coders in the literature.

  • PDF

A Compact Metamaterial Chip Antenna with Ground Coupling Structure for Bluetooth Application (Ground Coupling 구조를 이용한 초소형 Metamaterial Bluetooth 칩 안테나)

  • Park, Young-Hwan;Lee, Kang-Hee;Ji, Jeong-Keun;Ryu, Ji-Woong;Kim, Gi-Ho;Seong, Won-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.930-935
    • /
    • 2009
  • This paper describes a miniaturezed metamaterial BT chip antenna for mobile devices. The size of the proposed antenna is $3.0\;mm(W){\times}2.0\;mm(L){\times}1.2\;mm(H)$. And it is fabricated by chip type. The zeroth-order resonant properties are analyzed by magnitude and phase distributions of the surface current using surface current scanning system. The antenna offers omni-directional radiation patterns and measured 3D average gain is over - 1.7 dBi.

Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision

  • Jeon, Jin-Hun;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.468-473
    • /
    • 2014
  • PURPOSE. This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by $10^{\circ}-20^{\circ}$ and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (${\alpha}=.05$). RESULTS. Precision discrepancies for the canine, premolar, and molar were $3.7{\mu}m$, $3.2{\mu}m$, and $7.3{\mu}m$, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were $6.2{\mu}m$, $11.2{\mu}m$, and $21.8{\mu}m$, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION. In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

Accuracy of virtual models in the assessment of maxillary defects

  • Kamburoglu, Kivanc;Kursun, Sebnem;Kilic, Cenk;Ozen, Tuncer
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Materials and Methods: Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) $60{\times}60mm$ FOV, $0.125mm^3$ ($FOV_{60}$); 2) $80{\times}80mm$ FOV, $0.160mm^3$ ($FOV_{80}$); and 3) $100{\times}100mm$ FOV, $0.250mm^3$ ($FOV_{100}$). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. Results: A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. Conclusion: In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.