• Title/Summary/Keyword: 3D-Scanning

Search Result 1,477, Processing Time 0.034 seconds

Three-dimensional Geometrical Scanning System Using Two Line Lasers (2-라인 레이저를 사용한 3차원 형상 복원기술 개발)

  • Heo, Sang-Hu;Lee, Chung Ghiu
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.165-173
    • /
    • 2016
  • In this paper, we propose a three-dimensional (3D) scanning system based on two line lasers. This system uses two line lasers with different wavelengths as light sources. 532-nm and 630-nm line lasers can compensate for missing scan data generated by geometrical occlusion. It also can classify two laser planes by using the red and green channels. For automatic registration of scanning data, we control a stepping motor and divide the motor's rotational degree of freedom into micro-steps. To this end, we design a control printed circuit board for the laser and stepping motor, and use an image processing board. To compute a 3D point cloud, we obtain 200 and 400 images with laser lines and segment lines on the images at different degrees of rotation. The segmented lines are thinned for one-to-one matching of an image pixel with a 3D point.

Photopolymer Solidification Phenomena Considering Laser Exposure Conditions in Micro-stereolithography Technology (마이크로 광 조형에서 레이저 주사조건에 따른 광 경화성수지의 경화현상)

  • 이인환;조동우;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2004
  • Micro-stereolithography technology has made it possible to fabricate a freeform 3D microslructure. This technology is based on conventional stereolithography, in which a UV laser beam irradiates the open surface of a UV-curable liquid photopolymer, causing it to solidify. In micro-stereolithography, a laser beam of a few $\mu m$ diameter is used to solidify a very small area of the photopolymer. This is one of the key technological elements, and can be achieved by using a focusing lens. Thus, the solidification phenomena of the liquid photopolymer must be carefully investigated. In this study, the photopolymer solidification phenomena in response to variations in the scanning pitch of a focused laser beam was investigated experimentally. The effect of layer thickness on the solidification width and depth was also examined. These studies were conducted under the conditions of relatively lower laser power and relatively higher scanning speed. Moreover, the photopolymer solidification phenomena for the relatively higher laser power and lower scanning speed was investigated, too. In this case, comparing to the case of lower laser power and higher scanning speed, the photopolymer absorbed large amount of irradiation energy of the laser beam. These results were compared with those obtained from a photopolymer solidification model. From these results, a new laser-scanning scheme was proposed according to the shape of the 3D model. Samples by each method were fabricated successfully.

A FEASIBILITY STUDY ON THE NUMERICAL PRE-ASSEMBLY SIMULATION USING 3D LASER SCANNING MEASUREMENT

  • Kyoungmin Kim ;Seok Kim ;Chan-Hyuk Park ;Kyong Ju Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1193-1198
    • /
    • 2005
  • The pre-assembly takes a large portion of the fabrication cost of steel bridges. In order to save the fabrication cost through the improvement of the conventional pre-assembling process, this research investigates a numerical pre-assembly simulation as an alternative to current pre-assembling process. The 3D laser scanning was utilized in site and measuring data for steel box were analyzed. The productivity of pre-assembly simulation system is compared with the conventional pre-assembling system. This paper identifies feasibility on the alternative pre-assembling process and then proposes the scheme of the pre-assembly simulation system development satisfying the current pre-assembly inspection of standards.

  • PDF

Last Design for Men's Shoes using 3D Foot Scanner and 3D Printer (3D 발 스캐너와 3D 프린터를 이용한 남성화 라스트 설계)

  • Oh, Seol-Young;Suh, Dong-Ae;Kim, Hyung-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.186-199
    • /
    • 2016
  • The shoe last which is the framework for the shoemaking is intensively combined with the 3D data and technologies. International shoe companies have already commercialized 3D printing technology in producing the shoe, but domestic shoe companies are still in their early stages. This study used the 3D scanning, 3D modeling and 3D printing of the high-technology to make the shoe last. This 3D producing processes should be helpful in building competitiveness in domestic shoe industry. The 3D foot scanning data of men in 30s(n=200) were collected in SizeKorea(2010). The basic statistics, factor and cluster analysis were performed. They were categorized in 3 groups by 3D foot measurement data, and the standard models were selected in each group. The cross sections in XY, YZ and XZ planes sliced from 3D scan data of the standard model were used in the sketches of the 3D shoe last modeling. The 3D shoe last was modeled by Solidworks CAD and printed by MakerBot Replicator2; a desktop 3D printer. This research showed the potential for utilization of 3D printing technology in the domestic shoe industry. The 3D producing process; 3D scanning, 3D modeling and 3D printing is expected to utilized widely in the fashion industry within the nearest future.

The 3D Depth Extraction Method by Edge Information Analysis in Extended Depth of Focus Algorithm (확장된 피사계 심도 알고리즘에서 엣지 정보 분석에 의한 3차원 깊이 정보 추출 방법)

  • Kang, Sunwoo;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.139-146
    • /
    • 2016
  • Recently, popularity of 3D technology has been growing significantly and it has many application parts in the various fields of industry. In order to overcome the limitations of 2D machine vision technologies based on 2D image, we need the 3D measurement technologies. There are many 3D measurement methods as such scanning probe microscope, phase shifting interferometry, confocal scanning microscope, white-light scanning interferometry, and so on. In this paper, we have used the extended depth of focus (EDF) algorithm among 3D measurement methods. The EDF algorithm is the method which extracts the 3D information from 2D images acquired by short range depth camera. In this paper, we propose the EDF algorithm using the edge informations of images and the average values of all pixel on z-axis to improve the performance of conventional method. To verify the performance of the proposed method, we use the various synthetic images made by point spread function(PSF) algorithm. We can correctly make a comparison between the performance of proposed method and conventional one because the depth information of these synthetic images was known. Through the experimental results, the PSNR of the proposed algorithm was improved about 1 ~ 30 dB than conventional method.

Comparative evaluation of repeatability of scanning abutment tooth stone model and impression : Applied assessment of CAD/CAM ISO standard in dentistry (치과 캐드캠 ISO평가 기준에 준한 지대치 경석고 모형 및 인상체 스캐닝의 반복측정안정성 비교 평가)

  • Jeon, Jin-Hun;Hwang, Seong-Sig;Kim, Chong-Myeong;Kim, Dong-Yeon;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Purpose: The purpose of this in vitro study compared to evaluation of repeatability of scanning abutment tooth stone model and impression applied CAD/CAM ISO standard in dentistry. Methods: To evaluate repeatability of scanning abutment tooth stone model, were repeatedly scanned to obtain 11 data via 3D stereolithography (STL) files. 10 data (STL files) were compared with the first 3D data (STL file), and the error sizes were measured by using 3D superimposing software(n=10). Also, the repeatability of scanning abutment tooth impression was evaluated with the same procedure. Independent t test was performed to evaluate the repeatability of scanning abutment tooth stone model versus impression through root mean square(RMS) and standard deviation(SD)(${\alpha}=0.05$). Results: $RMS{\pm}SD$ with regard to repeatability were $14.7{\pm}2.5{\mu}m$, $17.1{\pm}4.0{\mu}m$, respectively, with scanning abutment tooth stone model and impression(p=0.129). Conclusion: This study results showed a little different repeatability of scanning abutment tooth stone model and impression applied CAD/CAM ISO standard in dentistry, will suggest futures good studies and clinical advantages.

Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler

  • Yoo, Hong-Ki;Lee, Seung-Woo;Kang, Dong-Kyun;Kim, Tae-Joong;Gweon, Dae-Gab;Lee, Suk-Won;Kim, Kwang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.3-7
    • /
    • 2006
  • Confocal scanning microscopy is a measurement technique used to observe micrometer and sub-micrometer features due to its high resolution, nondestructive properties, and 3D surface profiling capabilities. The design, implementation, and performance test of a confocal scanning microscopy system are presented in this paper. A short-wavelength laser (405 nm) and an objective lens with a high numerical aperture (0.95) were used to achieve the desired high resolution, while the x- and y-axis scans were implemented using an acousto-optic deflector and galvanomirror, respectively. An objective lens with a piezo-actuator was used to scan the z-axis. A spatial resolution of less than 138 nm was achieved, along with successful 3D surface reconstructions.

A Study on the Dynamic Expression of Fabrics based on RGB-D Sensor and 3D Virtual Clothing CAD System (RGB-D 센서 및 3D Virtual Clothing CAD활용에 의한 패션소재의 동적표현 시스템에 대한 연구)

  • Lee, Jieun;Kim, Soulkey;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.1
    • /
    • pp.30-41
    • /
    • 2013
  • Augmented reality techniques have been increasingly employed in the textile and fashion industry as well as computer graphics sectors. Three-dimensional virtual clothing CAD systems have also been widely used in the textile industries and academic institutes. Motion tracking techniques are grafted together in the 3D and augmented reality techniques in order to develop the virtual three-dimensional clothing and fitting systems in the fashion and textile industry sectors. In this study, three-dimensional virtual clothing sample has been prepared using a 3D virtual clothing CAD along with a 3D scanning and reconstruction system. Motion of the user has been captured through an RGB-D sensor system, and the virtual clothing fitted on the user's body is allowed to move along with the captured motion flow of the user. Acutal fabric specimens are selected for the material characterization. This study is a primary step toward building a comprehensive system for the user to experience interactively virtual clothing under real environment.

Development of 3D Inspection Equipment using White Light Interferometer with Large F.O.V. (대시야 백색광 간섭계를 이용한 3차원 검사 장치 개발)

  • Koo, Young Mo;Lee, Kyu Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.694-699
    • /
    • 2012
  • In this paper, semiconductor package inspection results using white light interferometer with large F.O.V., in order to apply semiconductor product inspection process, are shown. Experimental 3D data repeatability test results for the same special bumps of each substrate are shown. Experimental 3D data repeatability test results for all the bumps in each substrate are also shown. Semiconductor package inspection using white light interferometer with large F.O.V. is very important for the fast 3D data inspection in semiconductor product inspection process. This paper is surely helpful for the development of in-line type fast 3D data inspection machine.

Improvement of Optical 3D Scanner Performance Using Atomization-Based Spray Coating

  • Valinasab, Behzad;Rukosuyev, Maxym;Lee, Jason;Ko, Junghyuk;Jun, Martin B.G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • The scanning quality can be influenced by reflective abilities of a surface. Transparency and glossiness of a surface can highly limit the scanning results. Various techniques have been developed to solve problems of reflective and transparent surfaces. As one of the most feasible and convenient solutions, a thin layer of coating with proper specifications is sprayed on surface for eliminating the problems of the surfaces. As the main goal is to keep the object geometry unchanged, then it is important to coat the surface with layers less than one micrometer in thickness. For this purpose, a newly designed atomization-based spray system has been developed and tested in sets of experiments to study its efficiency on scanning results while objects with the surface are in use. This paper presents the spray design process and then studies and compares the 3D scanning results of the surfaces coated with atomization-based and aerosol sprays.