• Title/Summary/Keyword: 3D-ISOVIST

Search Result 7, Processing Time 0.023 seconds

Exploration of Isovist Fields to Model 3D Visibility With Building Facade

  • Chang, Dong-Kuk;Park, Joo-Hee
    • Architectural research
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 2011
  • Visibility of a space have been defined in several different ways: such as the axial line covering a convex space, a convex space defining the fattest shape in a space and an Isovist field formed by a field of vision at a given vantage point. Isovist fields are referred to as a descriptive medium to describe a movement by reviewing and analyzing geometric properties in them. Many descriptive methods for analysis of three-dimensional isovist are applied to analyzing the morphological properties in a 3D space more realistically. Although these models are regarded as a more advanced method for describing spatial properties, they have pros and cons such as complex mathematical calculations and somewhat arbitrary calibration in addition to huge consumption of memory space. These difficulties lead to the development of a three-dimensional visual accessibility model that explores the implication of building shape on the calculation of isovist fields drawn on a 2D plane. We propose a conceptual framework of how to measure the isovist field not as a 3D volume but as a combination of 2D plane on the ground with the 3D building shape of it's facade.

Simulation to Evaluate CCTV Positioning in Use of Ray-Tracing Algorithm (Ray-Tracing 알고리즘을 이용한 CCTV배치 평가시뮬레이션)

  • Kim, Suk-Tae;Ahn, Sang-Ook
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.6
    • /
    • pp.40-48
    • /
    • 2013
  • Utilization of CCTV in crime prevention for public safety is accepted as the most effective measure in terms of crime prevention and control. Also, it is frequently used as a device that shows evidence of an unexpected situation or record on public social relationship. However, it is rare to find a study that qualitatively accessed the monitoring performance of a certain space depending on the choice and positioning of CCTVs. Thus, this study suggested a technology that can quantitatively compare and assess the monitoring performance of CCTVs depending on view angle and effective sight range of cameras as well as the monitoring performance depending on positioning measures. For the analysis, the concept of 3-dimensional surveillance field in the form of a frustum was suggested while deriving 3-dimensional range of sight and quantitative monitoring performance by applying Isovist theory. For the analysis technology, space of analysis subject, point of view (camera), and target point (measurement node) were installed at a 3-dimensional space and in use of ray-tracing algorithm, the line segment that was visually connected between the point of view and target point was extracted and accumulated. For such verification, analysis application was constructed and then applied to four alternative models on view angle and distance as well as four alternatives on positioning in order to verify its efficacy. Through the experiment, it was possible to compare and assess visibility depending on alternatives while quantifying the results by understanding the shadow areas beyond the monitoring range.

Assessment technology for spatial interaction of Artificial Monitoring System through 3-dimensional Simulation (3차원 시뮬레이션을 이용한 인위감시체계의 공간대응성능 평가기술)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1426-1433
    • /
    • 2015
  • CCTV-applied monitoring is an effective measure to suppress potential crimes and record objective relationship; however, there is no methodology that can quantitatively compare and assess the afore-mentioned effects. Thus, this study intended to construct the methodology and analysis application that can measure the changes in the space-corresponding performance of CCTVs depending on installation measures by using 3-dimenstional virtual simulation technology. For analysis, the raster-based Isovist theory was 3-dimensionally expanded and the amount of incident sight line to each point was accumulated. At the same time, the amount of overlapped monitoring in the CCTV cameras that were connected to each measurement node was accumulated for cross-analysis. By applying the examples and analyzing the results, it was possible to construct an analysis application in use of collision detection model and quantify the changes of monitoring performance depending on positioning alternative of the cameras. Moreover, it enabled intuitive review and supplementation by reproducing visible shadow areas in a graph.

Prediction of Urban Development and Cityscape with a Simulation Model (시뮬레이션 모형을 이용한 도시 개발형태 및 경관의 변화 예측)

  • 이인성;김충식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.106-113
    • /
    • 2004
  • The shapes(mass) of buildings are determined by many interrelated factors, such as planning and building regulations, the size and shape of building parcels, and adjoining road conditions. Understanding the effects of the determinants on the building shapes is not a simple task because of the multiplicity and complex interrelationships of the determinants. This study developed a prototype of three dimensional computer model that can simulates the determination process of building shape using GIS and CAD techniques. A commercial block in the south of Seoul was selected for the case study. Several methods of building height control were applied, and their effects on the cityscape were evaluated. The results shows that the three dimensional computer modelling offers an effective means for evaluating the effects of planning and building regulations. The implication of the case study and future research directions were discussed.

A Study on the Deduction of 3-Dimmensional Visual Structure and measurement of Quantitative Openness in Accordance with Spatial Probe Routes (공간탐색경로에 따른 3차원 시각구조 도출과 정량적 개방도 측정에 관한 연구)

  • Kim, Suk-Tae
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.112-120
    • /
    • 2010
  • Human can recognize the environment by detecting spatial perception, and most of environmental perception depends on visual perception. In view that the acquisition of spatial information is accomplished through visual recognition, analysis of visual structure contained in the space is thought to be very important sector in studying the characteristic of the space. The history of studies on visual structure of space, however, wasn't too long, and furthermore most of the theories up to now focused on static and planar principles. Under this circumstance, this study is intended to suggest new theory by combining Isovist theory and VGA theory that have been actively discussed as the theory on visual perception-based spatial structure and supplementing them between each other to expand into 3-dimensional model. The suggested theory is a complex principle in dimensional and dynamic form in consideration of visual direction, which forms 3-dimentional virtual model that enables visualization of the property of spatial structure as the routine discriminating whether visual connection is made between viewing point and target point, and the target point is included in the visual field quadrangular pyramid or not. Such model was built up by an analysis application where four probe paths were applied to simulate the visual structure that occurs in virtual space, and then the characteristics were analyzed through quantification. In result, in spite of the path with equal space and equal length, significant difference in the acquired quantity of spatial information could be found depending on the probe sequence. On the contrary, it was found that probe direction may not affect the acquired quantity of information and visual property of the space.

A study for the establishment of analysis tool for the visible area of three dimensional space - Based on the Raster operation using 3D game engine - (다시점 가시영역 분석도구설정에 관한 기초연구 - 3D게임엔진을 이용한 래스터 연산방식을 중심으로 -)

  • Kim, Suk-Tae;Jun, Han-Jong
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.5
    • /
    • pp.38-46
    • /
    • 2007
  • In the late 1970s, the method of quantitative and scientific space structural analysis based on graph theory was introduced to the process of space design, which arranges design and functional elements, as relying heavily on intuition could produce errors due to unverified experiences and prejudices of the designer. As the method of space analysis is complex and hard to express visually and requires repetitive operations, it was discussed theoretically only. However, with the development of computer performance and graphic in recent years, visualization became possible. But the method of visual structural analysis of space is at the level of two dimensions and it is not easy to get accurate data when it is applied to limited three dimensional space such as an interior space. For the visual structural analysis of space, this study presents 4 indices including visibility volume level, pure visibility connection frequency, effective visibility connection frequency, and path visibility connection frequency. This study also presents space division using three dimensional arrangement rather than the existing vector operation method and raytracing algorithm at the lattice constant. Based on this, an analysis tool for the visible regions of three dimensional space that is capable of evaluating at multiple points by using three dimensional game engine and presentation tool that allows the analyzer to interpret the data effectively is made. It is applied to 2 prototype models by displacing Z axis, and the results are compared with UCL Depthmap to verify the validity of data and evaluate its usefulness as a multidimensional, multi-view space analysis tool.

The Removal of Spatial Inconsistency between SLI and 2D Map for Conflation (SLI(Street-level Imagery)와 2D 지도간의 합성을 위한 위치 편차 제거)

  • Ga, Chill-O;Lee, Jeung-Ho;Yang, Sung-Chul;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2012
  • Recently, web portals have been offering georeferenced SLI(Street-Level Imagery) services, such as Google Streetview. The SLI has a distinctive strength over aerial images or vector maps because it gives us the same view as we see the real world on the street. Based on the characteristic, applicability of the SLI can be increased substantially through conflation with other spatial datasets. However, spatial inconsistency between different datasets is the main reason to decrease the quality of conflation when conflating them. Therefore, this research aims to remove the spatial inconsistency to conflate an SLI with a widely used 2D vector map. The removal of the spatial inconsistency is conducted through three sub-processes of (1) road intersection matching between the SLI trace and the road layer of the vector map for detecting CPPs(Control Point Pairs), (2) inaccurate CPPs filtering by analyzing the trend of the CPPs, and (3) local alignment using accurate CPPs. In addition, we propose an evaluation method suitable for conflation result including an SLI, and verify the effect of the removal of the spatial inconsistency.