• Title/Summary/Keyword: 3D-Finite element program

Search Result 276, Processing Time 0.021 seconds

Evaluation of the Cochlear Electrode Behavior in the 3D Human Cochlea Model by FEM Analysis (3차원 달팽이관 모델에서의 인공와우 전극의 거동에 대한 유한요소해석)

  • 임윤섭;박세익;김용협;오승하;김성준
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.207-215
    • /
    • 2004
  • A finite element analysis is used in this study to model 6 kinds of electrode by a genetic program in order to evaluate the mechanical effect on the 3D human cochlea model and the behavior of electrode. Human cochlea is modeled by the spiral-approximation method and the shape of scala tympani is extracted from the mid section of the human cochlea. Contact pressure at the tip and the insertion force are found to be highest when the wires stack horizontally. Axial rotation of electrode is minimal comparing with the stimulating current spread. The results indicate that the electrode stiffness is important to minimize the trauma.

Development of Composite Theory and Computer Program for 3-D Layered System (3차원 층구조체의 복합해석 및 컴퓨터 프로그램의 개발)

  • Lim, Chong Kyun;Park, Moon Ho;Kim, Jin Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 1994
  • An equivalent homogeneous 3-D linear composite analysis and accomponying finite element program is presented for elastomeric bearings. This study is limited to the 3-D layered system with linear, elastic, isoparametric small deformation. And we used method of multiscale to model the 3-dimensional configurations and overall response of the layered elastomeric bearings with global and local coordinates. The primary dependent variables for the theory have been selected that require only $C_o$ continuity of the finite element analysis. As a result, it is very simple and computationally economical. The presented theory can also be applied easily to the analysis of nonlinear behavior of layered systems. And those of past are not applicable to nonlinear analysis, because it uses superposition theory. Numerical examples are presented to verify the theory and to illustrate potential applications of the analysis.

  • PDF

Prediction of ultimate moment anchorage capacity of concrete filled steel box footing

  • Bashir, Muhammad Aun;Furuuchi, Hitoshi;Ueda, Tamon;Bashir, M. Nauman
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.645-658
    • /
    • 2013
  • The objective of the study is to predict the moment anchorage capacity of the concrete filled steel box (CFSB) as footing by using the 3D finite element program CAMUI developed by authors' laboratory. The steel box is filled with concrete and concrete filled steel tube (CFT) column is inserted in the box. Numerical simulation of the experimental specimens was carried out after introducing the new constitutive model for post peak behavior of concrete in compression under confinement. The experimental program was conducted to verify the reliability of the simulation results by the FE program. The simulated peak loads agree reasonably with the experimental ones and was controlled by concrete crushing near the column. After confirming the reliability of the FEM simulation, effects of different parameters on the moment anchorage capacity of concrete filled steel box footing were clarified by conducting numerically parametric study.

Development of Computer Aided 3D Model From Computed Tomography Images and its Finite Element Analysis for Lumbar Interbody Fusion with Instrumentation

  • Deoghare, Ashish;Padole, Pramod
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • The purpose of this study is to clarify the mechanical behavior of human lumbar vertebrae (L3/L4) with and without fusion bone under physiological axial compression. The author has developed the program code to build the patient specific three-dimensional geometric model from the computed tomography (CT) images. The developed three-dimensional model provides the necessary information to the physicians and surgeons to visually interact with the model and if needed, plan the way of surgery in advance. The processed data of the model is versatile and compatible with the commercial computer aided design (CAD), finite element analysis (FEA) software and rapid prototyping technology. The actual physical model is manufactured using rapid prototyping technique to confirm the executable competence of the processed data from the developed program code. The patient specific model of L3/L4 vertebrae is analyzed under compressive loading condition by the FEA approach. By varying the spacer position and fusion bone with and without pedicle instrumentation, simulations were carried out to find the increasing axial stiffness so as to ensure the success of fusion technique. The finding was helpful in positioning the fusion bone graft and to predict the mechanical stress and deformation of body organ indicating the critical section.

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

FINITE ELEMENT ANALYSIS OF FIN-TYPE IMPLANT FIXTURES (Fin type 임플랜트 고정체의 유한요소법적 분석)

  • Kim, Su-Gwan;Chon, Chang-Gil;Hwang, Gab-Woon;Kim, Byung-Ock
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.1
    • /
    • pp.14-25
    • /
    • 2003
  • The purpose of this study was to analyze the stress pattern in different bone densities surrounding fin-type implant fixtures under the vertical and inclined loads ($30^{\circ}) of 200N. Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the loads were calculated by using the finite element method. Four different types of bicon implant fixture were used for this study. The geometries of implant fixtures to develop the model were used by a sales brochure and profile project. Three-dimensional finite element model of the mandible was developed with 6.0 mm implant in diameter wurrounded by approximately 2.5 mm of bone. Bone densities were classified according to the elastic modulus of the tree. The finite element program MSC PATRAN (MSC, Software Corp., USA) were used for analysis of stress distribution. The value of the Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the vertical and inclined loads were decreased when the diameter of implant fixture was increased, and increased when the elastic modulus was decreased. The stress on implant fixture under the vertical and inclined loads was distributed through the length of implant fixtures in D3 and D4. The distribution of stress was influenced by the direction of loads. In the wide diameter of implants, the stress was developed at outer surface of bone. In conclusion, this study suggest that stress developing on the peri-implant tissues might be influenced by the dimension of implant, elastic modulus of bone, and direction of loads.

Numerical modelling of stress and deflection behaviour for welded steel beam-column

  • Soy, Ugur
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • In this study, stress and deflection behaviours of T-type welding joint applied to HE200M steel beam and column were investigated in finite element method (FEM) under different distributed loads. In the 3D-FEM modelling, glue option was used to contact between steel materials and weld nuggets. Geometrical model was designed as 3-dimensional solid in ANSYS software program. After that, homogeneous, linear and isotropic properties were used to design to materials of model. Solid-92 having 3-dimensional, 4 faced and 10-noded was selected as element type. In consequence of mesh operation, elements of 13285 and nodes of 28086 were occurred. Load distribution was applied to top surface of steel beam to determine behaviours of stress and deflection. As a result of FEM analysis applied with the loads of 55,000 N, 110,000 N and 220,000 N, maximum values were obtained as 116 N/$mm^2$, 232 N/$mm^2$ and 465 N/$mm^2$ for stress and obtainedas 1,083 mm, 2,166 mm and 4.332 mm for deflection, respectively. When modelling results and classical calculation values were compared, it was obtained difference of 10 % for stress values and 2.5% for deflection values.

Vehicle Dynamic Analysis Using Nonlinear Finite Element Analysis Program(LS-DYNA) (비선형 유한요소 해석프로그램(LS-DYNA)을 이용한 차량 동력학해석)

  • Min, Han-Ki;Lee, Hyun;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.36-42
    • /
    • 2002
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness(NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the virtual proving ground(VPG) approach for obtaining the dynamic characteristics. VPG approach uses a nonlinear, dynamic, finite element code(LS-DYNA3D) which expands the application boundary outside the classic linear, antic assumptions. VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

A Study on the Side Collision Accident Reconstruction Using 3-Dimensional Crash Analysis (3차원 충돌해석 정보를 이용한 측면 충돌 사고 재구성)

  • Jang, In-Sik;Kim, Il-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2008
  • The side collision reconstruction algorithm is developed using three dimensional car crash analysis. Medium size passenger car is modeled for finite element analysis. Total 24 side collision configurations, four different speed and six different angle, are set up for making side collision database. Deformation index and degree index are built up for each collision case. Deformation index is a kind of deformation estimate averaging displacement of side door of crashed car from finite element analysis result. Angle index is constructed measuring deformed angle of crashing car. There are two kinds of angle index, one is measured at driver's side and the other is measured at passenger's side. Also a collision analysis information in side of cars is used for giving a basis for scientific and practical reason in a reconstruction of the car accident. The analysis program, LS-DYNA3D is utilized for finite element analysis program for a collision analysis. Those database are used for side collision reconstruction. Side collision reconstruction algorithm is developed, and applied to find the collision conditions before the accident occurs. Three example collision cases are tried to check the effectiveness of the algorithm. Deformation index and angle index is extracted for the case from the analysis result. Deformation index is compared to the established database, and estimated collision speed and angle are introduced by interpolation function. Angle index is used to select a specific collision condition from the several available conditions. The collision condition found by reconstruction algorithm shows good match with original condition within 10% error for speed and angle. As a result, the calculation from the reconstruction of the situation is reproducing the situation well. The performance in this study can be used in many ways for practical field using deformation index and degree index. Other different collision situations may be set up for extending the scope of this study in the future.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.