• Title/Summary/Keyword: 3D-FEM

Search Result 939, Processing Time 0.031 seconds

Finite Element Analysis for Design of Divided Shank of Self-Piercing Rivet (분리형 섕크를 갖는 SPR의 형상 설계를 위한 유한요소해석)

  • Kim, Kwan-Woo;Kim, Dongbum;Cho, Hae-Yong
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.54-58
    • /
    • 2016
  • SPR(Self-Piercing rivet) is mechanical element of joining sheet metal components without the need for pre-punched or pre-drilled holes. Newly designed SPR is developed for high joining strength and shearing strength than semi-tubular rivet. In this study, divided shank of self-piercing rivet were designed for joining DP440 and SILAFONT. Newly designed SPR was simulated by using FEM code DEFORM-3D. In simulations of SPR process, various shape of self-piercing rivet were considered for semi-tubular and newly designed SPR. In other to examine the joinability, joining load and lap-shear load of newly designed SPR were compared with semi-tubular by simulated results and experimental ones.

Analysis of Hydroforming Process and Forming Limit Prediction by FEM (유한요소법을 적용한 하이드로포밍 공정 해석 및 성형한계 예측)

  • Kim J.;Kang S. J.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.36-39
    • /
    • 2001
  • Tubular hydroforming has attracted increased attention in the automotive industry recently. In this study, a professional finite element program for analysis and design of tube hydroforming processes has been developed, called HydroFORM-3D, which is based on a rigid-plastic model. With the developed program several hydroforming processes such as a tee extrusion, an automotive rear axle housing and lower arm are analyzed and designed. And also, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of the hydroforming process could be evaluated. The pediction of the bursting failure and the plastic deformation during typical hydroforming processes shows to be reasonable so that this approach can be extended to other various tube hydroforming processes.

  • PDF

DESIGN CONSIDERATION OF MULTIPACTOR PHENOMENA BASED ON S-BAND DIPLEXER FOR SATELLITE APPLICATIONS

  • Choi Seung-Woon;Kim Day-Young;Kwon Ki-Ho;Chae Tae-Byeong;Lee Jong-In
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.360-363
    • /
    • 2004
  • This review is concerned with the MP (multipactor) phenomena of the diplexer for RFDU DM of next generation satellite. The MP discharge is serious problems to design RF components in space applications such ase damage of physical structure, performance degradation, and mission failure of the satellite. In this work, we employed the 3D finite element method (FEM) to calculate the critical gap points and adopted ESTEC curve, MP susceptibility zone, to analyze the maximum handling RF power in the diplexer. And this work also recommends that one should design the tx filter of the diplexer which is more wider bandwidth upto the points to escape the ears of the group delay especially the cavity type of RF components in space applications.

  • PDF

Combustion Instability Modeling in a Partially-premixed Gas Turbine Combustor using Finite Element Method (유한요소법을 이용한 부분 예혼합 가스터빈 연소기에서의 연소불안정 모델링)

  • Jang, Segu;Kim, Deasik;Joo, Seongpil;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • The current study has developed an in-house 3D FEM code in order to model thermoacoustic problems in a gas turbine combustion system and compared calculation results of main instability characteristics with measured ones from a lab-scale partially-premixed combustor. From the comparison of calculation results with the measured data, the current model could successfully capture the harmonic longitudinal instability frequencies and their spatial distributions of the acoustic field as well as the growth rate of self-excited modes.

Magnetic Field Analysis of Deflection Yoke Using Novel Technique for the Accurate Analysis of Current Distribution (새로운 전류분포 해석법을 이용한 자기 편향 요크의 자계 해석)

  • Im, Chang-Hwan;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.590-593
    • /
    • 2000
  • The analysis of current distribution in a solidly modeled coil is very important for accurate analysis of electric machines such as deflection yoke(DY). In general, Modeling every coils is impossible for analyzing magnetic field using the 3-D FEM, so solidly modeled coil is usually used. Some methods have been developed for analyzing current distribution, but these methods have fatal disadvantage that they cannot be applied to an arbitrary shaped coil and that they yield numerical errors. In this paper. a novel method for resolving the problems mentioned above is proposed. The new method is verified by the application to a DY and it shows improved results.

  • PDF

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory

  • Mohammadi, B.;Hosseini-Toudeshky, H.;Sadr-Lahidjani, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.657-674
    • /
    • 2009
  • In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.

A Study on the Press Forming by Rectangular Tube of Al6063 Alloys (Al6063 합금 중공각재 튜브에 의한 프레스 성형 연구)

  • Lee, Choung-Kook;Kim, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • In this study, a method for the press forming of rectangular aluminium tube has been proposed. Rectangular aluminium tube has high stiff as the cold steel which can be lighter over 30% weight. It is increased every year by being recycled over 80%. Press die consists of punch, wing-die and holder for aluminium tube bending. When punch is applied with aluminium tube, holder is operated as same punch and wing-die is rotated through hinge. Stress-strain relations and springback are considered by bending angle of aluminium tube. In this study, the behaviors on tubes of square aluminium and rectangular aluminium with different thickness and area are established by the analysis of $DEFORM^{TM}$-3D program. Reducing fuel consumption is expected by using the aluminium tube deformation and it becomes the lightweight through recycling.

A Study on Design of Reducer Using Hypoid High Ratio Gear (하이포이드 하이레이셔 기어를 이용한 감속기 설계에 대한 연구)

  • Kim, Seongyong;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.99-103
    • /
    • 2014
  • A hypoid gear is a type of spiral bevel gear whose axis does not intersect with the axis of the meshing gear. The size of a hypoid gear is compact and the ratio of contact is high; therefore, the noise is lower than in other types. Due to these characteristics, the hypoid gear is commonly used in manufacturing processes such as those of escalators and subway screen doors. The purpose of this paper is to develop a reducer using the hypoid gear. In order to check the stability of the proposed reducer, 3D modeling is carried out by CATIA, and a structural analysis is performed using FEM (a finite element method).

Effect of the Si-adhesive layer defects on the temperature distribution of electrostatic chuck (Si-adhesive 층의 불량에 따른 정전척 온도분포)

  • Lee, Ki Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.71-74
    • /
    • 2012
  • Uniformity of the wafer temperature is one of the important factors in etching process. Plasma, chucking force, backside helium pressure and the surface temperature of ESC(electrostatic chuck) affect the wafer temperature. ESC consists of several layers of structure. Each layer has own thermal resistance and the Si-adhesive layer has highest thermal resistance among them. In this work, the temperature distribution of ESC was analyzed by 3-D FEM with various defects and the thickness deviation of the Si-adhesive layer. The result with Si-adhesive layer with the low center thickness deviation shows modified temperature distribution of ESC surface.

Design of Current Waves for the Vibration Decrease of Linear Pulse Motor (선형 펄스 모터의 진동 감소를 위한 전류 파형의 설계)

  • Cho Yun-Hyun;Suh Jin-Ho;Lee Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.174-180
    • /
    • 2005
  • Linear pulse motor (LPM) has the vibration during the operation because of magnetic characteristic which is caused by the mechanical configuration and the electromagnetic property. This paper proposes the calculation of thrust on the base of magnetic equivalent circuit for the purpose of the vibration minimization of LPM. The permeance of LPM is calculated and simulated from the construction tooth. The thrust is compared with the analytical method, the 3D finite element method (FEM) and the experimental values. The vibration of LPM is measured and estimated to select the input current wave for an optimal operation condition.