• Title/Summary/Keyword: 3D-FEM

Search Result 939, Processing Time 0.028 seconds

Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE

  • Kumar, Dinesh;Srivastava, Ashish
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1085-1103
    • /
    • 2016
  • The present paper is aimed to evaluate and compare the effective elastic properties of CNT- and graphene-based nanocomposites using 3-D nanoscale representative volume element (RVE) based on continuum mechanics using finite element method (FEM). Different periodic displacement boundary conditions are applied to the FEM model of the RVE to evaluate various elastic constants. The effects of the matrix material, the volume fraction and the length of reinforcements on the elastic properties are also studied. Results predicted are validated with the analytical and/or semiempirical results and the available results in the literature. Although all elastic stiffness properties of CNT- and graphene-based nanocomposites are found to be improved compared to the matrix material, but out-of-plane and in-plane stiffness properties are better improved in CNT- and graphene-based nanocomposites, respectively. It is also concluded that long nanofillers (graphene as well as CNT) are more effective in increasing the normal elastic moduli of the resulting nanocomposites as compared to the short length, but the values of shear moduli, except $G_{23}$ of CNT nanocomposite, of nanocomposites are slightly improved in the case of short length nanofillers (i.e., CNT and graphene).

The Mixed Mode fatigue Crack Propagation Behavior with the Variation of Stress Ratio (응력비 변화에 따른 혼합모드 피로균열 전파거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2287-2296
    • /
    • 2002
  • Most cracks in the structure occur under mixed mode loading and those fatigue crack propagation behavior heavily depends on the stress ratio. So, it is necessary to study the fatigue behavior under mixed mode loading as the stress ratio changes. In this paper, the fatigue crack propagation behavior was respectively investigated at stress ratio 0.1, 0.3, 0.5, 0.7 and we changed the loading application angle into 0$^{\circ}$, 30$^{\circ}$, 60$^{\circ}$ to apply various loading mode. The mode I and II stress intensity factor of CTS specimen used in this study was calculated by the displacement extrapolation method using FEM (ABAQUS). Using both the experiment and FEM analysis, we have concluded the relationship between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress ratio and loading mode condition, we have concluded the dominant factors of the crack propagation rate at each case.

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

Design of Electromagnetic Actuator with Three-Link Mechanism for Air Circuit Breaker (기중 차단기용 전자석 조작기 및 3절 링크 설계)

  • Kim, Rae-Eun;Kwak, Sang-Yeop;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1321-1328
    • /
    • 2009
  • In this paper, an electromagnetic force driving actuator (EMFA) and three-link mechanism are proposed as a driving mechanism and connection device for low voltage air circuit breaker (ACB). As the result of dynamic characteristic analysis, the actuator and link mechanism are designed from the simulation and manufactured. The magneitc field of the EMFA is analyzed using the finite element method (FEM). The dynamic characteristic analysis with calculation of the circuit equation and kinetical equation is performed by the time difference method (TDM). Also, the result of the analysis is verified through the experiment of the fabrication model. In this paper, the EMFA size is smaller than the actuator for high voltage circuit breaker. Thus, the dynamic characteristic is analyzed with end-winding inductance that is calculated by the same method which is applied on the circle type end-winding of motors. The designed model for 1600 ampere-frame ACB and the three-link mechanism for connecting contact part with actuating part are manufactured. It is confirmed that the three-link mechanism is possible for improving the circuit breaker efficiency and reducing the size of the EMFA. It is proved that the improved 2-D analysis is more accurate than established method.

Shape Design of Disk Seal in $SF_6$ Gas Safety Valve using Taguchi method (다구찌법을 이용한 $SF_6$가스 안전밸브용 디스크 시일 형상의 설계)

  • Cho Seunghyun;Kim Chungkyun;Kim Younggyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.237-240
    • /
    • 2004
  • Sulfur Hexafluoride, SF6 is widely used for leak detection and as a gaseous dielectric in transformers, condensers and circuit breakers. SF6 gas is also effective as a cleanser in the semiconductor industry. This paper presents a numerical study of the sealing force of disk type seal in SF6 gas safety valve. The sealing force on the disk seal is analyzed by the FEM method based on the Taguch's experimental design technique. Disk seals in SF6 gas safety valve are designed with 9 design models based on 3 different contact length, compressive ratio and gas pressure. The calculated results of Cauchy stress and strain showed that the sealing characteristics of Teflon PTFE is more effective compared to that of FKM(Viton), which is related to the stiffness of the materials. And also, the contact length of the disk seal is important design parameter for sealing the SF6 gas leakage in the safety valve.

  • PDF

Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity

  • Atmaca, Barbaros;Ates, Sevket
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Prestressed concrete I-girders are subject to different load types at their construction stages. At the time of strand release, i.e., detensioning, prestressed concrete girders are under the effect of dead and prestressing loads. At this stage, the camber, total net upward deflection, of prestressed girder is summation of the upward deflection due to the prestressing force and the downward deflection due to dead loads. For the calculation of the upward deflection, it is generally considered that prestressed concrete I-girder behaves linear-elastic. However, the field measurements on total net upward deflection of prestressed I-girder after detensioning show contradictory results. In this paper, camber calculations with the linear-elastic beam and elastic-stability theories are presented. One of a typical precast I-girder with 120 cm height and 31.5 m effective span length is selected as a case study. 3D finite element model (FEM) of the girder is developed by SAP2000 software, and the deflections of girder are obtained from linear and nonlinear-static analyses. Only geometric nonlinearity is taken into account. The material test and field measurement of this study are performed at prestressing girder plant. The results of the linear-elastic beam and elastic-stability theories are compared with FEM results and field measurements. It is seen that the camber predicted by elastic-stability theory gives acceptable results than the linear-elastic beam theory while strand releasing.

Development of Rubber Sleeve for Reduction of End-mark in Cold Rolled Steel Sheet (고급강판용 엔드마크 감소를 위한 고무 슬리브의 개발)

  • Kim, Soon-Kyung;Kim, Dong-Keon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, a FEM analysis is undertaken of a rubber sleeve which is mounted onto a spreading mandrel so as to avoid marking the first wrappings of coils (known as the 'end-mark'), as occasionally occurs when a concentrated load is placed on the edge of a steel sheet, significantly reducing its quality. A commercial numerical package, ANSYS, was utilized to analyze the structural behavior of the rubber sleeve. In general, the strain of the sleeve increases as the thickness of the rubber layer (H) covering the tubes increases, thus also increasing the surface of the sleeve for a constant boundary condition, and decreasing the pitch (P) between each tube, resulting in an increase in the strain on the surface of the sleeve for all rubber thickness conditions tested here. In a comparison of two different materials, rubber and urethane, when H=3 mm and P=1.1D, the maximum total deformations in these cases are 0.12669 mm and 0.086623 mm, respectively.

Design and Drive Characteristics of BLDC Motor Control System for Tread Mill Application (Tread Mill 구동용 BLDC 전동기 제어시스템 설계 및 운전특성)

  • 안진우;이동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • Brushless D.C. Motor is widely used for industrial application because of high efficiency and high power density. Especially, in home appliance, BLDCM is very useful due to high control performance and low acoustic noise. In this paper, BLDCM and its controller are designed and developed for tread mill application. With the restricted stator structure, permanent magnet rotor is designed for manufacturing and cost effectiveness using CAD and FEM analysis. A ferrite magnetic material is used as a rotor magnet for the cost and temperature advantages. For a stable operation of tread mill, over current and temperature can be detected and protected. The designed BLDCM and its controller was verified by the experimental results.

Wheel-Rail Contact Analysis considering the Deformation of Wheel and Axle (차륜 및 차축의 변형을 고려한 차륜-레일 접촉해석)

  • Choi, Ha-Young;Lee, Dong-Hyong;You, Won-Hee;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.20-27
    • /
    • 2010
  • A precise evaluation of the contact position and the distribution of contact pressure in a wheel-rail interface analysis is one of the most important procedures to predict fatigue life and wear of wheel and rail. This paper presents the analysis result of finite element method(FEM) to investigate how the deformation of a wheelset, which is the assembly of wheel and axle of a railroad vehicle, affect the contact analysis of wheel and rail. 3D-FEM was used to analyze three contact models; a model with only wheel, a model with wheelset, and a model with simplified wheel and rail geometry. The analysis result of the contact position and the distribution of contact pressure are discussed. It is shown that the analysis results of a model with wheelset represent largest value with respect to contact pressure and contact stress. Furthermore, it is found that the distribution of contact pressure and the contact position is highly affected by the deformation of wheel and axle. It is concluded that the deformation of axle should be considered to evaluate the exact contact parameters in a wheel-rail contact analysis.

Dimensional Changes and Residual Stress of Spur Gear According to the Manufacturing Processes -Comparison of Cold Forging Part with Machining Part- (스퍼기어의 제조공정에 따른 치수변화와 잔류응력에 관한 연구 -냉간 단조기어와 기계가공기어 비교-)

  • Kwon, Y.C.;Lee, J.H.;Lee, C.M.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.575-581
    • /
    • 2007
  • The high dimensional accuracy of the cold forged part could be acquired by the accurate dimensional modification for the die, which is, the dimensional changes from the die through forged part to final part after heat treatment were considered. The experimental and FEM analysis are performed to investigate the dimensional changes from the die to final part on cold forged part, comparing with the machined gear. The dimension of forged part is compared with the die dimension at each stage, such as, machined die, cold forged part, and heat-treated-part. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the $DEFORM-3D^{TM}$. The analyzed residual stress of forged part is considered into the FE-analysis for heat treatment using the $DEFORM-HT^{TM}$. The effects of residual stress affected into the dimensional changes could be investigated by the FEA. Each residual stress of gears was measured practically by laser beam type measurement.