• Title/Summary/Keyword: 3D-FEM

Search Result 939, Processing Time 0.042 seconds

RF-MEMS-Based DPDT Switch on Silicon Substrate for Ku-Band Space-Borne Applications

  • Singh, Harsimran;Malhotra, Jyoteesh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.16-20
    • /
    • 2017
  • A RF-MEMS (radio-frequency microelectromechanical-system) based DPDT (double pole double throw) switch for the Ku band has been designed and analyzed for this article. The switch topology is based on the FG-CPW (finite ground-coplanar waveguide) configuration of a microstrip-transmission line. An FEM-based multiphysics solver is used for the evaluation of the spring constant, stress distribution, and pull-in voltage regarding the requirements of the switch-beam unit. The electromagnetic performance of the switch is investigated for a $675{\mu}m$ thick silicon substrate. For the operational frequency of 14.5 GHz, an insertion loss better than -0.3 dB, a return loss better than -40 dB, and input/output- and output-port isolations better than -35 dB are achieved for the switching unit.

An Investigation into Micro Valve Field and Flow Field Characteristic of 7mm Width (7mm폭의 Micro Valve 자장 및 유동특성 고찰)

  • Jeon, Y.S.;Kim, D.S.;Shin, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.657-658
    • /
    • 2006
  • Recently, the micro on-off valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for micro valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate micro on-off valve using the analogy of equivalent magnetic circuit and Finite Element Method(FEM) respectively. In case of poppet, flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

Implementation of Wideband Low Noise Down-Converter for Ku-Band Digital Satellite Broadcasting (Ku-대역 광대역 디지탈 위성방송용 저 잡음하향변환기 개발)

  • Hong, Do-Hyeong;Lee, Kyung Bo;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • In this paper, wideband Ku-band downconverter was designed to receiver digital satellite broadcasting. The low-nose downconverter was designed to form four local oscillator frequencies(9.75, 10, 10.75 and 11.3 GHz) representing a low phase noise due to VCO-PLL with respect to input signals of 10.7 to 12.75 GHz and 3-stage low noise amplifier circuit by broadband noise matching, and to select intermediate frequency bands by digital control. The developed low-noise downconverter exhibited the full conversion gain of 64 dB, and the noise figure of low-noise amplifier was 0.7 dB, the P1dB of output signal 15 dBm, and the phase noise -85 dBc@10kHz at the band 1 carrier frequency of 9.75 GHz. The low noise block downconverter(LNB) for wideband digital satellite broadcasting designed in this paper can be used for global satellite broadcasting LNB.

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.

Process Design in Precision Press Forming of Electronic Components (정밀 전자부품 성형을 위한 소성가공 공정설계)

  • 변상규;최한호;강범수
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.79-91
    • /
    • 1995
  • Precision forming of electronic components has appeared to be competitive according to manufacturing cost and dimensional tolerances. Now domestic electronic companies have been involving in utilization of the finite element method in process design of precision forming. A forming process to produce an electronic component, aperture, has been inbestigated to find out forming defects during multi-operations. The applications of the commercial FEM software MARC show a possibility of defect in precision coining process among the whole multi-process. Thus the coining process of three-dimensional deformation is analyzed using DAMF-3D which has been developed in this lab with the rigid-plastic algorithm. The result f simulations by DAMF-3D provides clear description of the defect involved in the coining process.

  • PDF

3-D Analysis of Hot Forging Processes using the Mesh Compression Method (격자압축법을 이용한 3차원 단조공정해석)

  • Hong, J.T.;Yang, D.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.492-497
    • /
    • 2001
  • In the finite element analysis of metal forming processes using general Lagrangian formulation, element nodes in the mesh move and elements are distorted as the material is deformed. The excessive degeneracy of mesh interrupts finite element analysis and thus increases the error of plastic deformation energy. In this study, a remeshing scheme using so-called mesh compression method is proposed to effectively analyze the flash which is generated usually in hot forging processes. In order to verify the effectiveness of the method, several examples are tested in two-dimensional and three-dimensional problems.

  • PDF

A 3D-Structural Beam Optimization for a VENLO-Type Plastic-Film House using Computer Aided FEM (전산유한요소를 이용한 벤로형 플라스틱필름온실의 3D 구조재 최적 설계)

  • 김경원;김만수;윤진하;전종길;이인복
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.07a
    • /
    • pp.360-365
    • /
    • 2003
  • 최적화의 개념은 목적에 따라 다양하겠으나 수치해석에서는 기본적으로 설계변수를 움직여 목적함수를 최소화 혹은 최대화하는데 있다. 열전달에서는 최소온도, motor를 설계할 때는 최대토크 등이 있고, 구조물설계에 있어서는 최소무게(Weight or Volume) 혹은 최대의 Frequency를 구하는데 최적화 수치해석이 이용되고 있다. 오늘날 컴퓨터하드웨어의 발달과 더불어 전산수치해석의 영역이 급속히 높아져가고 있으며 PC에서의 계산처리능력이 90년대의 work station급을 초가 함으로써 보다 쉽게 전산수치해석이 가능하게 되었다. (중략)

  • PDF

CRASHWORTHY DESIGN AND EVALUATION ON THE FRONT-END STRUCTURE OF KOREAN HIGH SPEED TRAIN

  • Koo, J.S.;Youn, Y.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.173-180
    • /
    • 2004
  • An intensive study was conducted for the crash worthy structural design of the recently developed Korean High Speed Train (KHST). Two main design concepts were set up to protect both crews and passengers from serious injury in heavy collision accidents, and to reduce damage to the train itself in light collision accidents. A collision against a movable 15-ton rigid obstacle at 110 kph was selected from train accident investigations as the accident scenario for the heavy collisions. A train-to-train collision at the relative velocity of 16 kph was used for the light collision. The crashworthiness behaviors of KHST were numerically evaluated using FEM. Analysis results using 1-D collision dynamics model of the full rake consist and 3-D shell element model of the front end structure showed good crashworthy responses in a viewpoint of structural design. Occupant analyses and sled tests demonstrated that KHST performed well enough to protect occupants under the considered accident scenarios. Finally our numerical approaches were evaluated by a real scale collision test.

E.M.F Characteristic of Superconducting Synchronous Generator according to Design Parameter (설계변수 변화에 따른 초전도 동기 발전기의 유기기전력 특성)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.65-68
    • /
    • 1999
  • The major deisng parameters that are considered in this paper are: 1) EMF according to width of field coil. 2) EMF according to magnetic shield length. Because of superconducting generator (SG) is actually and air cored machine with its rotor iron and stator iron teeth having been removed. In this case, the desing of the SG must be based on the 3D analysis of the magnetic field. This study presents an effective armature winding type with 3D FEM(Finite Element Method), and compares analyzed and measured results.

  • PDF