Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.1.16

RF-MEMS-Based DPDT Switch on Silicon Substrate for Ku-Band Space-Borne Applications  

Singh, Harsimran (Department of Electronics & Communication Engineering, Guru Nanak Dev University-Regional Campus)
Malhotra, Jyoteesh (Department of Electronics & Communication Engineering, Guru Nanak Dev University-Regional Campus)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.1, 2017 , pp. 16-20 More about this Journal
Abstract
A RF-MEMS (radio-frequency microelectromechanical-system) based DPDT (double pole double throw) switch for the Ku band has been designed and analyzed for this article. The switch topology is based on the FG-CPW (finite ground-coplanar waveguide) configuration of a microstrip-transmission line. An FEM-based multiphysics solver is used for the evaluation of the spring constant, stress distribution, and pull-in voltage regarding the requirements of the switch-beam unit. The electromagnetic performance of the switch is investigated for a $675{\mu}m$ thick silicon substrate. For the operational frequency of 14.5 GHz, an insertion loss better than -0.3 dB, a return loss better than -40 dB, and input/output- and output-port isolations better than -35 dB are achieved for the switching unit.
Keywords
RF-MEMS; Spring constant; Stress; Pull-in voltage; Finite ground;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. E. Ponchak, L. P. Katehi, and E. M. Tentzeris, Ann Arbor, 1001, 48109 (1998).
2 H. Singh, A. Karmakar, and K. Singh, 1st International Science &Technology Congress (Elsevier Science and Technology, 2014) p. 150.
3 J. Taeksoo, H. Yoon, J. K. Abraham, and V. K. Varadan, IEEE Transactions on Microwave Theory and Techniques, 54, 1131 (2006). [DOI: http://dx.doi.org/10.1109/TMTT.2006.869721]   DOI
4 G. M. Rebeiz, RF MEMS: Theory, Design and Techniques (1st ed.) (Wiley Inter science, New York, 2003).
5 R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook (Boston, Artech House, 2003).
6 S. P. Pacheco and L.P.B. Katehi, RF Technologies for Low Power Wireless Communications (2002) p. 349.
7 C. Luxey, L. Dussopt, J.L.L. Sonn, and J. M. Laheurte, Electron. Lett., 36, 2, (2000). [DOI: http://dx.doi.org/10.1049/el:20000119]   DOI
8 M. Maddela , R. Ramadoss, and R. Lempkowski, Proc. ISIE, (Vigo, Spain, 2007) p. 3255. [DOI: http://dx.doi.org/10.1109/ISIE.2007.4375136]
9 L. Vietzorreck and T. Kim, Proc. 2013 11th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS) (Nis, Serbia, 2013). [DOI: http://dx.doi.org/10.1109/TELSKS.2013.6704399]
10 M. Daneshmand, A. A. Fomani, M. M. Fahmi, J.A.R. Cruz, and R. R. Mansour, Proc. IEEE MTT-S International Microwave Symposium Digest (Montreal, Canada, 2012) p. 1.
11 A. D. Angelis, E. Lucibello, R. Proietti, R. Marcelli, G. Bartolucci, F. Casini, P. Farinelli, G. Mannocchi, S. D. Nardo, D. Pochesci, B. Margesin, F. Giacomozzi, O. Vendier, T. Kim, and L. Vietzorreck, International Journal of Microwave and Wireless Technologies, 4, 421 (2012). [DOI: http://dx.doi.org/10.1017/S1759078712000074]   DOI
12 T. Kim, L. Vietzorreck, P. Farinelli, B. Margesin, R. Marcelli, D. Pochesci, E. D. Paola, F. Vitulli, and S. D. Nardo, Adv. Radio Sci., 11, 143 (2013). [DOI: http://dx.doi.org/10.5194/ars-11-143-2013]   DOI
13 E. Erdil, K. Topalli, M. Unlu, O. A. Civi, and T. Akin, IEEE transactions on antennas and propagation, 55, 1193 (2007). [DOI: http://dx.doi.org/10.1109/TAP.2007.893426]   DOI
14 S. Lucyszyn, Advanced RF MEMS (1st ed.) (Cambridge University Press, UK, 2010).
15 S. K. Koul and S. Dey, J. ISSS, 2, 27 (2013).
16 W. Auer, E Hettlage, and G. Ruff, Proc. the 3rd European Space Mechanisms & Tribology Symposium (Madrid, Spain, 1987).