• Title/Summary/Keyword: 3D-FEM

Search Result 939, Processing Time 0.033 seconds

Determination of Adequate Solder Volume using 3D Solder Joint Configuration in SMT (3차원 납 접합부 형상을 이용한 표면실장기술의 적정 납량 결정)

  • 최동필;김성관;유중돈
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 1996
  • In order to rpovide proper SMT design criteria in a systematic way, a mathematical formulation has been developed to predict the configuration of the solder fillet formed between the gullwing type lead and rectangular pad. Effects of SMT design parameters such as the solder volume and pad dimension on the solder profile are investigated using the FEM that calculates the 3D configuration by minimizing the energy due to surface tension and gravity in the equilibrium state. Design criteria of QFP and SOP are illustrated by plotting the acceptable range of the solder volume with respect to the length and width ratios of the pad and lead. The results show that the acceptable design range increases with increase in the pad length and width. The pad length has more significant effects on design criteria compared with the pad width, and Bond number can be utilized to predict the joint quality.

  • PDF

Finite element analysis of RC beam-column joints with high-strength materials

  • Noguchi, H.;Kashiwazaki, T.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.625-634
    • /
    • 1997
  • Reinforced concrete (RC) interior beam-column joints with high-strength materials: concrete compressive strength of 100 MPa and the yield strength of longitudinal bars of 685 MPa, were analyzed using three-dimensional (3-D) nonlinear finite element method (FEM). Specimen OKJ3 of joint shear failure type was a plane interior joint, and Specimen 12 of beam flexural failure type was a 3-D interior joint with transverse beams. Though the analytical initial stiffness was higher than experimental one, the analytical results gave a good agreement with the test results on the maximum story shear forces, the failure mode.

Stress Intensity factor Analysis for Three-Dimensional Cracks in Inhomogeneous Materials (비균질재료의 3차원 균열에 대한 응력확대계수 해석)

  • 김준수;이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.197-203
    • /
    • 2003
  • Accurate stress intensity factor analyses and crack growth rate of surface -cracked components in inhomogeneous materials are needed fur reliable prediction of their fatigue life and fracture strengths. This paper describes an automated stress intensity factor analysis of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor fur subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

The Application of Nonlinear 3-D Tunnel Analysis Program for the Improved Efects of Steel Pipe Reinforced Multi Step Grouting Method (3차원 터널해석에 의한 강관 다단 그라우팅의 보강효과)

  • Kim, Hyeong-Tak;Lee, Bong-Yul;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.25.2-38
    • /
    • 1995
  • the Effect of steel pipe reinforced multi-step grouting(SPRG) technique to inrove the ground far ahead of the excavation face was investigated by means of numerical analysis. It was found taht the nonlinear 3-D FEM program performed well to evaluate the usefulness of the SPRG technique in soft ground tunnelling, and about 20% of settlement control in this particular case possible. Therefore in urban subway tunnel construction, the New Austirial Tunnelling Method can be satisfactorily applied even in poor ground conditon with aid of the SPRG technique.

  • PDF

3-D Eddy Current Analysis Considering the Velocity of Suspension Magnet by Hybrid FE, BE Method (FEM, BEM 혼합적용에 의한 속도를 고려한 부상전자석의 3차원 와류 해석)

  • Im, Dal-Ho;Hong, Jung-Pyo;Lee, Geun-Ho;Sin, Heung-Gyo;Kim, Goo-Tak
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1007-1009
    • /
    • 1993
  • In this paper, The hybrid method in order to reduce the unknown varible for 3D eddy current calculation is proposed. we adopt the current vector potential(T) and the magnetic scalar potential($\Omega$) as field variable, and adopt image charge method for symetric boundary condition in BEM. We apply the hybrid method to electromagnet for levitation system and analyze the charateristics of eddy current airgap flux distribution, attractive and magnetic drag force according to velocity.

  • PDF

3-D Magnetic Field Simulation of Open-ended Cylinder Type Magnetic Shield (양쪽 끝이 열린 원통형 자기 실드캔의 3차원 자계 해석)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.99-103
    • /
    • 2011
  • In this study, we have performed systematical FEM analysis for design of open-ended 3-layer magnetic shield. For the simulation to calculated shielding factors, the relative permeability was varied in the range of $2{\times}10^3\sim1{\times}10^5$, and the length of the magnetic cylinders and length difference between layers were changed. We found that the shielding factor of -60 dB were obtained with the relative permeability of over 20000 and the lengths of magnetic layers of 40 cm, 45 cm and 50 cm, and the uniform magnetic field could be obtained in the range of $10cm{\times}10cm-\phi$.

Study on the Autofrettage Pressure for SCBA Type3 Cylinder (공기호흡기용 Type3 용기의 자긴압력과 수명에 관한 연구)

  • Kim, Kwang Seok;Lee, Kyomin;Lee, Jaehun;Cho, Seongmin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.53-56
    • /
    • 2016
  • In this study, experiments and finite element method analysis were used to determine the autofrettage pressure that is optimal and then maximizes the cycling life of Type3 composite cylinders used in self-contained breathing apparatus. For both approaches, the cylinders were pressurized at 100, 110, ${\ldots}$, 290 % of the test pressure, respectively. The stresses were computed by the FEM analysis; while the strains of cylinders were recorded and the failure modes were monitored during the cycling test. As a result, from the good agreements between the simulations and experiments, it was concluded that at least 70 % of the test pressure should be applied as the autofrettage pressure in order to takes visible effect on the cycling life, and 160 % of the test pressure induces the maximum cycling life and the desired failure mode.

Performance Analysis of Automobile Type Air Conditioner Tube Connector (자동차용 에어컨 튜브 커넥터의 성능 해석)

  • Jang, Sung-Cheol;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.52-58
    • /
    • 2007
  • This study shows a numerical method to predict automobile type air conditioner tube connector in the forming process. The simulation approach with 3-D FEM program(ABAQUS) for forming process, forming process simulation is in good agrement with it in tendency. Finally, we compared the forming result with simulation. The result of research showed thai forming process technology is promising to produce automobile type air conditioner tube connector.

  • PDF

Equivalent Plate Modeling of the Wing-Box Structure with Control Surface

  • Kim, Eun-Ho;Roh, Jin-Ho;Yoo, Seung-Jae;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.104-109
    • /
    • 2006
  • In this study, the equivalent plate model is developed using a finite element method(FEM) based on the first order shear deformation theory(FSDT). The substructure synthesis method is used to consider the control surface. For the verification of the equivalent model, the results of free vibration analysis are compared with the ones of 3D wing structure modeled by using the MSC/NASTRAN.

Study on Warm Precision Forging of Half Axle Gears

  • Jie Zhou;Yong Zhang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.152-157
    • /
    • 2003
  • A typical die-set for enclosed-die forging of half axle gears in double action hydraulic press is presented, the important factors those influence on precision forming of half axle gears are analyzed, warm forming process of half axle gears is simulated by FEM software $DEFORM\_3D$. The results show, that proper die structure and dimension, suitable web thickness and position can improve material filling, ensure full filling of tooth cavity.

  • PDF