• 제목/요약/키워드: 3D-CNN

검색결과 158건 처리시간 0.024초

Towards Low Complexity Model for Audio Event Detection

  • Saleem, Muhammad;Shah, Syed Muhammad Shehram;Saba, Erum;Pirzada, Nasrullah;Ahmed, Masood
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.175-182
    • /
    • 2022
  • In our daily life, we come across different types of information, for example in the format of multimedia and text. We all need different types of information for our common routines as watching/reading the news, listening to the radio, and watching different types of videos. However, sometimes we could run into problems when a certain type of information is required. For example, someone is listening to the radio and wants to listen to jazz, and unfortunately, all the radio channels play pop music mixed with advertisements. The listener gets stuck with pop music and gives up searching for jazz. So, the above example can be solved with an automatic audio classification system. Deep Learning (DL) models could make human life easy by using audio classifications, but it is expensive and difficult to deploy such models at edge devices like nano BLE sense raspberry pi, because these models require huge computational power like graphics processing unit (G.P.U), to solve the problem, we proposed DL model. In our proposed work, we had gone for a low complexity model for Audio Event Detection (AED), we extracted Mel-spectrograms of dimension 128×431×1 from audio signals and applied normalization. A total of 3 data augmentation methods were applied as follows: frequency masking, time masking, and mixup. In addition, we designed Convolutional Neural Network (CNN) with spatial dropout, batch normalization, and separable 2D inspired by VGGnet [1]. In addition, we reduced the model size by using model quantization of float16 to the trained model. Experiments were conducted on the updated dataset provided by the Detection and Classification of Acoustic Events and Scenes (DCASE) 2020 challenge. We confirm that our model achieved a val_loss of 0.33 and an accuracy of 90.34% within the 132.50KB model size.

CNN 기반 공조 덕트 청소 로봇의 교차점 검출 알고리듬 개발 (Development of a CNN-based Cross Point Detection Algorithm for an Air Duct Cleaning Robot)

  • 이사랑;노은솔;홍석무
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.1-8
    • /
    • 2020
  • 건물 내부 공기 순환을 위한 공조 덕트는 장기간 사용 시 오염물질이 내부에 쌓여 인력 또는 로봇이 투입되어 청소가 주기적으로 수행된다. 청소는 작업시간과 인건비 문제를 해결하기 위해 최근 원격 조정으로 로봇을 작동시키는 방법이 사용되고 있다. 하지만 완전 자동화가 아니라 인력 의존적이며 청소 시간 단축에도 한계가 있다. 본 연구는 공조 덕트 청소 로봇 자율 주행을 위해 교차점 검출 알고리듬 개발에 대한 것이다. 자율 주행은 청소 로봇에 장착된 카메라 영상에서 교차점 검출 알고리듬을 통해 추출된 점과 중심점 사이의 거리 및 각도를 계산하여 로봇을 제어하도록 구성된다. 교차점 검출을 위한 데이터는 3D CAD 프로그램을 이용한 공조 덕트 내부 이미지를 Python을 이용해 교차점 좌표 및 두 경계선 각도를 추출하여 생성했다. 검출 알고리듬은 딥러닝 중 CNN 모델이 학습에 사용됐으며 학습 모델은 입력이미지에서 교차점 정보를 추출하며 학습 모델 정확도는 면적과 거리를 이용해 판단했다. 알고리듬 검증을 위해 청소 로봇을 제작했으며 로봇은 몸체, Raspberry Pi, 카메라 및 초음파 센서를 포함한 제어부, 모터와 바퀴를 포함한 구동부로 구성된다. 알고리듬을 탑재한 로봇 청소기 주행 영상을 통해 알고리듬을 검증했다. 향후 공조 덕트뿐만 아니라 에스컬레이터 등 다양한 환경에서 적용 가능할 것으로 기대된다.

국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구 (Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes)

  • 최종윤;한혁;정유철
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.169-177
    • /
    • 2020
  • 과학기술 분야의 연구·개발 결과는 연구보고서 형태로 국가과학기술정보서비스(NTIS)에 제출된다. 각 연구보고서는 국가과학기술 표준 분류체계 (K-NSCC)에 따른 분류코드를 가지고 있는데, 보고서 작성자가 제출 시에 수동으로 입력하게끔 되어있다. 하지만 2000여 개가 넘는 세분류를 가지고 있기에, 분류체계에 대한 정확한 이해가 없이는 부정확한 분류코드를 선택하기 십상이다. 새로이 수집되는 연구보고서의 양과 다양성을 고려해 볼 때, 이들을 기계적으로 보다 정확하게 분류할 수 있다면 보고서 제출자의 수고를 덜어줄 수 있을 뿐만 아니라, 다른 부가 가치적인 분석 서비스들과의 연계가 수월할 것이다. 하지만, 국내에서 과학기술표준 분류체계에 기반을 둔 문서 자동 분류 연구 사례는 거의 없으며 공개된 학습데이터도 전무하다. 본 연구는 KISTI가 보유하고 있는 최근 5년간 (2013년~2017년) NTIS 연구보고서 메타정보를 활용한 최초의 시도로써, 방대한 과학기술표준 분류체계를 기반으로 하는 국내 연구보고서들을 대상으로 높은 성능을 보이는 문서 자동 분류기법을 도출하는 연구를 진행하였다. 이를 위해, 과학기술 표준분류 체계에서 과학기술 분야의 연구보고서를 분류하기에 적합한 중분류 210여 개를 선별하였으며, 연구보고서 메타 데이터의 특성을 고려한 전처리를 진행하였다. 특히, 가장 영향력 있는 필드인 과제명(제목)과 키워드만을 이용한 TK_CNN 기반의 딥러닝 기법을 제안한다. 제안 모델은 텍스트 분류에서 좋은 성능을 보이고 있는 기계학습법들 (예, Linear SVC, CNN, GRU등)과 비교하였으며, Top-3 F1점수 기준으로 1~7%에 이르는 성능 우위를 확인하였다.

Aerial Object Detection and Tracking based on Fusion of Vision and Lidar Sensors using Kalman Filter for UAV

  • Park, Cheonman;Lee, Seongbong;Kim, Hyeji;Lee, Dongjin
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.232-238
    • /
    • 2020
  • In this paper, we study on aerial objects detection and position estimation algorithm for the safety of UAV that flight in BVLOS. We use the vision sensor and LiDAR to detect objects. We use YOLOv2 architecture based on CNN to detect objects on a 2D image. Additionally we use a clustering method to detect objects on point cloud data acquired from LiDAR. When a single sensor used, detection rate can be degraded in a specific situation depending on the characteristics of sensor. If the result of the detection algorithm using a single sensor is absent or false, we need to complement the detection accuracy. In order to complement the accuracy of detection algorithm based on a single sensor, we use the Kalman filter. And we fused the results of a single sensor to improve detection accuracy. We estimate the 3D position of the object using the pixel position of the object and distance measured to LiDAR. We verified the performance of proposed fusion algorithm by performing the simulation using the Gazebo simulator.

Hellinger 거리 IoU와 Objectron 적용을 기반으로 하는 객체 감지 (Object Detection Based on Hellinger Distance IoU and Objectron Application)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.63-70
    • /
    • 2022
  • 2D 객체 감지 시스템은 최근 몇 년 동안 심층 신경망과 대규모 이미지 데이터세트의 사용으로 크게 개선되었지만, 아직도 범주 내에서 데이터 부족, 다양한 외관 및 객체 형상 때문에 자율 탐색 등과 같은 로봇 공학과 관련된 응용에서 2D 물체 감지 시스템은 적절하지 않다. 최근에 소개되고 있는 구글 Objectron 또한 증강 현실 세션 데이터를 사용하는 새로운 데이터 파이프라인이라는 점에서 도약이라 할 수 있지만, 3D 공간에서 2D 객체 이해라는 측면에서 마찬가지로 한계가 있다. 이에 본 연구에서는 더 성숙한 2D 물체 감지 방법을 Objectron에 도입하는 3D 물체 감지 시스템을 나타낸다. 대부분의 객체 감지 방법은 경계 상자를 사용하여 객체 모양과 위치를 인코딩한다. 본 작업에서는 가우스 분포를 사용하여 객체 영역의 확률적 표현을 탐색하는데, 일종의 확률적 IoU라 할 수 있는 Hellinger 거리를 기반으로 하는 가우스 분포에 대한 유사성 측도를 제시한다. 이러한 2D 표현은 모든 객체 감지기에 원활하게 통합할 수 있으며, 실험 결과 데이터 집합에서 주석이 달린 분할 영역에 더 가까워서 Objectron의 단점이라 할 수 있는 3D 감지 정확도를 높일 수 있다.

Skeleton Joints 기반 행동 분류 모델 설계 (Design of Behavioral Classification Model Based on Skeleton Joints)

  • 조재현;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.1101-1104
    • /
    • 2019
  • 키넥트는 RGBD 카메라로 인체의 뼈대와 관절을 3D 공간에서 스켈레톤 데이터수집을 가능하게 해주었다. 스켈레톤 데이터를 활용한 행동 분류는 RNN, CNN 등 다양한 인공 신경망으로 접근하고 있다. 본 연구는 키넥트를 이용해서 Skeleton Joints를 수집하고, DNN 기반 스켈레톤 모델링 학습으로 행동을 분류한다. Skeleton Joints Processing 과정은 키넥트의 Depth Map 기반의 Skeleton Tracker로 25가지 Skeleton Joints 좌표를 얻고, 학습을 위한 전처리 과정으로 각 좌표를 상대좌표로 변경하고 데이터 수를 제한하며, Joint가 트래킹 되지 않은 부분에 대한 예외 처리를 수행한다. 스켈레톤 모델링 학습 과정에선 3계층의 DNN 신경망을 구축하고, softmax_cross_entropy 함수로 Skeleton Joints를 집는 모션, 내려놓는 모션, 팔짱 낀 모션, 얼굴을 가까이 가져가는 모션 해서 4가지 행동으로 분류한다.

A Three-Dimensional Deep Convolutional Neural Network for Automatic Segmentation and Diameter Measurement of Type B Aortic Dissection

  • Yitong Yu;Yang Gao;Jianyong Wei;Fangzhou Liao;Qianjiang Xiao;Jie Zhang;Weihua Yin;Bin Lu
    • Korean Journal of Radiology
    • /
    • 제22권2호
    • /
    • pp.168-178
    • /
    • 2021
  • Objective: To provide an automatic method for segmentation and diameter measurement of type B aortic dissection (TBAD). Materials and Methods: Aortic computed tomography angiographic images from 139 patients with TBAD were consecutively collected. We implemented a deep learning method based on a three-dimensional (3D) deep convolutional neural (CNN) network, which realizes automatic segmentation and measurement of the entire aorta (EA), true lumen (TL), and false lumen (FL). The accuracy, stability, and measurement time were compared between deep learning and manual methods. The intra- and inter-observer reproducibility of the manual method was also evaluated. Results: The mean dice coefficient scores were 0.958, 0.961, and 0.932 for EA, TL, and FL, respectively. There was a linear relationship between the reference standard and measurement by the manual and deep learning method (r = 0.964 and 0.991, respectively). The average measurement error of the deep learning method was less than that of the manual method (EA, 1.64% vs. 4.13%; TL, 2.46% vs. 11.67%; FL, 2.50% vs. 8.02%). Bland-Altman plots revealed that the deviations of the diameters between the deep learning method and the reference standard were -0.042 mm (-3.412 to 3.330 mm), -0.376 mm (-3.328 to 2.577 mm), and 0.026 mm (-3.040 to 3.092 mm) for EA, TL, and FL, respectively. For the manual method, the corresponding deviations were -0.166 mm (-1.419 to 1.086 mm), -0.050 mm (-0.970 to 1.070 mm), and -0.085 mm (-1.010 to 0.084 mm). Intra- and inter-observer differences were found in measurements with the manual method, but not with the deep learning method. The measurement time with the deep learning method was markedly shorter than with the manual method (21.7 ± 1.1 vs. 82.5 ± 16.1 minutes, p < 0.001). Conclusion: The performance of efficient segmentation and diameter measurement of TBADs based on the 3D deep CNN was both accurate and stable. This method is promising for evaluating aortic morphology automatically and alleviating the workload of radiologists in the near future.

증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구 (AI-Based Object Recognition Research for Augmented Reality Character Implementation)

  • 이석환;이정금;심현
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1321-1330
    • /
    • 2023
  • 본 연구는 증강현실에서 적용할 캐릭터 생성에서 단일 이미지를 통해 여러 객체에 대한 3D 자세 추정 문제를 연구한다. 기존 top-down 방식에서는 이미지 내의 모든 객체를 먼저 감지하고, 그 후에 각각의 객체를 독립적으로 재구성한다. 문제는 이렇게 재구성된 객체들 사이의 중첩이나 깊이 순서가 불일치 하는 일관성 없는 결과가 발생할 수 있다. 본 연구의 목적은 이러한 문제점을 해결하고, 장면 내의 모든 객체에 대한 일관된 3D 재구성을 제공하는 단일 네트워크를 개발하는 것이다. SMPL 매개변수체를 기반으로 한 인체 모델을 top-down 프레임워크에 통합이 중요한 선택이 되었으며, 이를 통해 거리 필드 기반의 충돌 손실과 깊이 순서를 고려하는 손실 두 가지를 도입하였다. 첫 번째 손실은 재구성된 사람들 사이의 중첩을 방지하며, 두 번째 손실은 가림막 추론과 주석이 달린 인스턴스 분할을 일관되게 렌더링하기 위해 객체들의 깊이 순서를 조정한다. 이러한 방법은 네트워크에 이미지의 명시적인 3D 주석 없이도 깊이 정보를 제공하게 한다. 실험 결과, 기존의 Interpenetration loss 방법은 MuPoTS-3D가 114, PoseTrack이 654에 비해서 본 연구의 방법론인 Lp 손실로 네트워크를 훈련시킬 때 MuPoTS-3D가 34, PoseTrack이 202로 충돌수가 크게 감소하는 것으로 나타났다. 본 연구 방법은 표준 3D 자세벤치마크에서 기존 방법보다 더 나은 성능을 보여주었고, 제안된 손실들은 자연 이미지에서 더욱 일관된 재구성을 실현하게 하였다.

실내 환경에서 Chirp Emission과 Echo Signal을 이용한 심층신경망 기반 객체 감지 기법 (DECODE: A Novel Method of DEep CNN-based Object DEtection using Chirps Emission and Echo Signals in Indoor Environment)

  • 남현수;정종필
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.59-66
    • /
    • 2021
  • 인간은 오감 (시각, 청각, 후각, 촉각, 미각) 중 시각 및 청각 정보를 위주로 사용하여 주변 물체를 인식한다. 최신의 객체 인식과 관련한 주요 연구에서는 주로 이미지센서 정보를 이용한 분석에 초점이 맞추어져 있다. 본 논문에서는 다양한 chirp 오디오 신호를 관측공간에 방출하고 2채널 수신센서를 통해 echo를 수집하여 스펙트럼 이미지로 변화시킨 후 딥러닝을 기반으로 이미지 학습 알고리즘을 이용하여 3D 공간상의 객체 인식 실험을 진행하였다. 본 실험은 무향실의 이상적 조건이 아닌 일반적인 실내 환경에서 발생하는 잡음 및 echo가 있는 환경에서 실험을 진행하였고 echo를 통해 객체 인식률을 83% 정확도로 물체의 위치 추정할 수 있었다. 또 한 추론 결과를 관측공간과 3D Sound 공간 신호로 mapping 하여 소리로 출력하여 3D 사운드의 학습을 통해 소리를 통한 시각 정보를 얻을 수 있었다. 이는 객체 인식 연구를 위해서 이미지 정보와 함께 다양한 echo 정보의 활용이 요구된다는 의미이며 이런 기술을 3D 사운드를 통한 증강현실 등에 활용 가능할 것이다.

RoI 추출 방법에 따른 기계를 위한 영상 압축 성능 비교 (Comparison of Image Compression Performance based on RoI Extraction Methods for Machines Vision)

  • 이예지;김신;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.146-149
    • /
    • 2022
  • 기존 RDO(Rate Distortion Optimization) 기반 압축 방식은 압축 성능에 초점을 두기 때문에 영상 내 인지 특성이 무시될 수 있다. 따라서 RoI(Region of Interest)을 기반으로 압축률을 조절하는 연구가 고안[1, 2, 3, 4] 되었으며, HVS(Human Visual System) 관점에서 영상 내 중요한 부분에 대해 더 높은 품질로 영상을 압축하는 연구가 대부분이다. 최근 인공지능 기술이 발전함에 따라 지능형 영상 분석에 대한 수요가 증가하고 있으며, 이에 따라 머신 비전을 위한 영상 부호화 및 효율적인 전송에 대한 필요성이 대두되고 있다. 본 논문에서는 VVC(Versatile Video Coding)의 dQP(delta Quantization Parameter)를 활용하여 RoI(Region of Interest) 기반압축 방법을 제안하고, 두가지의 RoI 추출 방식을 소개한다. Detectron2 Faster R-CNN X101-FPN [5]의 첫번째 탐지기를 통해 후보 영역 기반 RoI 을 추출하고, 두번째 탐지기를 통해 객체 기반 RoI 을 추출하여, 영상 내 객체 부분과 비객체 부분으로 나누어 서로 다른 압축률로 압축을 수행하였으며, 이에 따른 성능을 비교하고자 한다.

  • PDF