• Title/Summary/Keyword: 3D watching

Search Result 79, Processing Time 0.028 seconds

The Influence of Accommodation on Watching Home 3D TV at Close Distance (가정용 3D TV의 근거리 시청이 조절기능에 미치는 영향)

  • Kim, Jung-Ho;Hwang, Hae-Young;Kang, Ji-Hun;Yu, Dong-Sik;Kim, Jae-Do;Son, Jeong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.2
    • /
    • pp.157-163
    • /
    • 2013
  • Purpose: This study was investigated weather watching 2D and 3D images effecting on accommodative function (AF), and differences between changes of AF by 2D and 3D. Methods: 50 subjects (male 30, female 20) aged 20's to 40's years old ($22.9{\pm}3.93$ years) who are available to watching 3D images were participated for this study. Accommodative amplitude (AA) by near point of accommodation (NPA), accommodative response (AR), positive and negative relative accommodation (PRA, NRA), accommodative facility (AF) were measured before, after watching 2D and 3D images at 1 m distance for 30 minutes respectively. Results: Accommodative amplitude after both watching 2D and 3D images decreased comparing to before watching images, and AA after watching 3D images was significantly lower than after watching 2D images. AR after both watching 2D and 3D images increased comparing to before watching images, but there was no difference between 2D and 3D. PRA and NRA were not significantly different between before, after watching 2D and 3D images. Accommodation speed by AF was increased for before watching ($13.52{\pm}3.32$ cpm) following by for after watching 2D images ($14.28{\pm}3.21$ cpm) and for watching 3D images ($14.90{\pm}3.27$ cpm). Conclusions: Watching images at close distance is effect to accommodation functions, and sequence of AA decrease of before watching images following by after watching 2D images and after watching 3D images may effect to asthenopia with same sequence as AA decrease. The results of increase of AF after watching images, specially 3D images show a possibility of vision therapy and further detail VT studies using 3D images are required in the future.

The Evaluations of Phoria and AC/A Ratio by Watching 3D TV at Near (3D TV 근거리 시청에 따른 사위도와 조절성폭주비 평가)

  • Son, Jeong-Sik;Kim, Dong-Su;Kim, Jung-Ho;Kim, Jae-Do;Hamacher, Alaric;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.319-324
    • /
    • 2015
  • Purpose: This study was designed to evaluate the changes of phoria and calculated AC/A ratio, and their recovery time points by watching 3D television (3D TV). Methods: 50 subjects (male 30, female 20) of 20s to 40s ages who can watch 3D, were measured phoria using a Howell phoria card at 3 m for distance and 40 cm for near. The phoria was evaluated before watching 3D TV and every 10 minutes from starting of watching 3D TV for 30 minutes, and every 5 minutes after finishing of watching 3D TV for 30 minutes again. Results: For the distance phoria during and after watching 3D TV, it was increased to more exophoria $-0.98{\pm}1.37{\Delta}$ (prism diopters) after 10 minutes from starting of 3D TV watching (p=0.063) and increased to more exophoria $-1.00{\pm}1.28{\Delta}$ after 30 minutes (p=0.024), and started to decrease after finishing of watching 3D TV and recovered to the level of before 3D TV watching ($-0.78{\pm}1.11{\Delta}$) after 20 minutes (p=0.32) with comparing to phoria of before watching 3D TV ($-0.80{\pm}1.12{\Delta}$). For the near phoria, it was also increased to more exophoria $-5.71{\pm}4.45{\Delta}$ after 10 minutes from starting of watching 3D TV (p=0.000) and $-6.58{\pm}4.36{\Delta}$ after 30 minutes (p=0.000), and started to decrease after finishing of watching 3D TV and recovered to the level of before watching 3D TV after 20 minutes ($-4.34{\pm}3.67{\Delta}$) (p=0.32) with comparing to the phoria of before watching 3D TV ($-4.36{\pm}3.66{\Delta}$). AC/A ratio was decreased from $4.92{\pm}1.17{\Delta}/D$ for before 3D TV watching to $4.11{\pm}1.50{\Delta}/D$ for after 30 minutes from starting of watching 3D TV (p=0.000), and increased after the end of watching 3D TV and recovered to the level of before 3D TV watching ($4.93{\pm}1.18{\Delta}/D$) after 25 minutes (p=0.598). Conclusions: During watching 3D TV at near, it showed a tendency of convergence insufficiency by decrease of calculated AC/A ratio as result that exophoria at near was higher increased than exophoria at distance. However, the increased exophoria at both near and distance was recovered to the level of base line after 25 minutes from the end of watching 3D TV. Through this study, it seems to need rational proposals of advice for watching 3D TV.

Visual fatigue in Watching 3 Dimension Television (3D TV 시청에 있어서 시청 피로)

  • Yoon, Jeong Ho;Lee, Ikhan;Kim, Taehyun;Kim, Jae-Do
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • Purpose: This study was to evaluate visual fatigue with passing of watching 3D TV in short term and with experience of watching 3DTV in long term. Methods: 98 adult subjects aged $33.5{\pm}5.5$ years (22 to 51 years; 12 females and 86 males) agreed to participate in this study. Subjects were asked to watch 52 inch LED 2D and 3D television (Shutter glasses method) at 2.7 meters for 65minutes with wearing their habitual glasses or contact lenses. For evaluating visual fatigue, subjects were verbally responded to 11 questions : eye straining, eye paining, dry eye, sore eye, watery eye, photophobia, blur vision, diplopia, eye fatigue, headache, and dizziness with scale 0 to 3 at each measurement while watching 3D and 2D TV. Results: The mean scores of visual fatigue were $2.08{\pm}2.14$, $3.19{\pm}3.02$, $3.40{\pm}3.37$, $3.53{\pm}3.07 $for after 5 minutes, 25 minutes, 45 minutes, and 65 minutes respectively for 3D TV, and $0.40{\pm}1.03$, $0.22{\pm}0.70$, $0.22{\pm}0.58$, and $0.17{\pm}0.52$ after 25, 45, and 65 minutes respectively for 2D TV. Visual fatigue for watching 3D TV was significantly higher than for watching 2D TV at all measurements sessions (paired t-test, p < 0.001). The visual fatigue significantly increased during watching 3D TV for 65 minutes (p < 0.001, RM-ANOVA). The visual fatigue during watching 3D TV was significantly increased until 25 minutes (paired t-test, p < 0.001), stable after that. For correlation between visual fatigue and 3D watching experience, the more 3D watching experiences were significantly the less visual fatigues in photophobia, blur vision, diplopic and dizzy symptoms (ANOVA, all F(1, 96) = 4.500, all p < 0.05), but there was not significantly different in the other symptoms (ANOVA, F (1, 96) = 2.123, p = 0.148). Conclusions: Visual fatigue for watching 3D TV was higher than for watching 2D TV, increase by 25 minutes. It was different by symptoms for correlation between visual fatigue and 3D watching experience.

A New 3D Depth Reconstruction Method Adaptive to Various Environments (환경 적응적 3D 깊이 재구성 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.271-279
    • /
    • 2016
  • The recent development of the HD (High Definition) and UHD (Ultra High Definition) technology allowed the growth of 3D contents market. Yet the majority of the 3D contents in the market are strictly for 6.5 cm inter-ocular distance, causing various visual discomforts for the viewers who have different inter-ocular distance. Moreover, because the 3D contents are created for a fixed viewing distance, the change of the viewing distances when watching 3D contents can also cause visual conflicts. To solve this problem, we devised techniques that consider the environmental information of the viewer watching 3D contents. By analyzing the relationship between viewing distance, inter-ocular distance, and perceived depth, we created an adaptive content viewing system that reflects the viewer's environment to minimize any conflicts in watching 3D contents. From our experiments, we found that the performance of our adaptive content viewing system was reasonable.

Change of Phoria and Subjective Symptoms after Watching 2D and 3D Image (2D와 3D 영상 시청 후 나타난 사위도 및 자각증상의 변화)

  • Kim, Dong-Su;Lee, Wook-Jin;Kim, Jae-Do;Yu, Dong-Sik;Jeong, Eui Tae;Son, Jeong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.185-194
    • /
    • 2012
  • Purpose: The changes of phoria and subjective asthenopia before and after viewing were compared based on 2D image and two ways of 3D images, and presented for references of 3D image watching and production. Methods: Change in phoria was measured before and after watching 2D image, 3D-FPR and 3D-SG images for 30 minutes with a target of 41 university students at 20-30 years old (male 26, female 15). Paired t-test and Pearson correlation between changed phoria and subjective symptoms which were measured using questionnaires were evaluated by before and after watching each images. Results: Right after watching 2D image, exophoria was increased by 0.5 $\Delta$, in distance and near, but it was not a significant level. Right after watching 3D image, exophoria was increased by 1.0~1.5 $\Delta$, and 1.5~2.0 $\Delta$, in distance and near, respectively when compared with before watching. In the significant level, exophoria tended to increase. Changes in near was increased more by 0.5 $\Delta$, compared with those in distance. Changes based on way of 3D-FPR and 3D-SG image were less than 0.5 $\Delta$, and there was almost no difference. In terms of visual subjective symptoms, eye strain was increased in 3D image compared with that in 2D image. In addition, there was no difference depending on way of image. In terms of Pearson correlation between phoria change and eye strain, as exophoria was increased, eye strain was increased. Conclusions: Watching 3D image increased eye strain compared with watching 2D image, and accordingly exophoria tended to increase.

An Analysis of Recovery Rate and a Change of Depth Recognition After Watching 3D Videos (3D 영상 시청 시 콘텐츠에 따른 깊이 인지 변화와 회복도 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • The recent increase in the production of 3D contents allowed viewers to experience various 3D contents. However, some of the viewers did not experience 3D depth well. Several researches were done in past to measure viewers' 3D depth perception, but these researches were done with certain limitations. In this paper, we measured viewers' 3D depth perception and recovery rate in relation with the changes in binocular disparities, saturation, and brightness values after subjects' watching 2D/3D contents. The results showed that when viewers watched the 3D content with positive binocular disparities for 42 minutes, viewers felt that the object seemed to have moved further forward than it was before; with 3D content with negative binocular disparities, viewers felt that the object seemed to be moved backwards. We found that the locational differences of the object in positive disparities were greater than those in the negative binocular disparities. The recovery rate was computed by comparing two measured values of before and after watching 3D contents for 30 minutes. On average, after 30-minute break, viewers showed roughly 50 % of recovery rate.

Variation of facial temperature to 3D visual fatigue evoked (3D 시각피로 유발에 따른 안면 온도 변화)

  • Hwang, Sung Teac;Park, SangIn;Won, Myoung Ju;Whang, MinCheol
    • Science of Emotion and Sensibility
    • /
    • v.16 no.4
    • /
    • pp.509-516
    • /
    • 2013
  • As the visual fatigue induced by 3D visual stimulation has raised some safety concerns in the industry, this study aims to quantify the visual fatigue through the means of measuring the facial temperature changes. Facial temperature was measured for one minute before and after watching a visual stimulus. Whether the visual fatigue has occurred was measured through subjective evaluations and high cognitive tasks. The difference in the changes that occurred after watching a 2D stimulus and a 3D stimulus was computed in order to associate the facial temperature changes and the visual fatigue induced by watching 3D contents. The results showed significant differences in the subjective evaluations and in the high cognitive tasks. Also, the ERP latency increased after watching 3D stimuli. There were significant differences in the maximum value of the temperature at the forehead and at the tip of the nose. A previous study showed that 3D visual fatigue activates the sympathetic nervous system. Activation of the sympathetic nervous system is known to increase the heart rate as well as the blood flow into the face through the carotid arteries system. When watching 2D or 3D stimuli, the sympathetic nervous system activation dictates the blood flow, which then influences the facial temperature. This study is meaningful in that it is one of the first investigations that looks into the possibility to measure 3D visual fatigue with thermal images.

Effect of 2Dimesion and 3Dimension Images on Human Factors

  • Kim, Jung-Ho;Kwon, Soon Chul;Son, Kwang Chul;Sohn, Chae Bong;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.6 no.2
    • /
    • pp.13-16
    • /
    • 2014
  • This study aims to examine the effects of watching 2D and 3D images on the blink rate. Regarding the image watch, their blink rate for 2D and 3D images was separately checked for 1 minute in the 1m distance, before the watch, after 15 minutes of watch, and after 30 minutes of watch. About the change of their blink rate in the 2D image watch, it tended to become higher than that before watching the image; however, there was no statistical significance (paired t-test, p=0.106, p=0.062). And in the 2D image watch, it tended to increase in comparison between after 15 minutes and after 30 minutes, but there was no statistical significance (paired t-test, p=0.623). Meanwhile, about the change of their blink rate in the 3D image watch, it tended to decrease statistically significantly both after 15 minutes and after 30 minutes when compared with that before watching the image (paired t-test, p=0.000, p=0.000). In the 3D image watch, it tended to increase in comparison between after 15 minutes and after 30 minutes; however, there was no statistical significance (paired t-test, p=0.867).

Eye Movement-based Visual Discomfort Analysis from Watching Stereoscopic 3D Contents Regarding Brightness and Viewing Distance (눈 움직임을 이용한 밝기와 시청거리에 따른 3D 콘텐츠 피로도 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1723-1737
    • /
    • 2016
  • When watching 3D contents, people often experience various visual discomforts like tiredness, dryness, headaches, and dizziness. Previous researches on visual discomfort analyzed and concluded vergence-accommodation conflict, viewing distance, and brightness changes to be the causes of visual discomfort. Yet it is necessary to systematically analyze the visual discomfort due to the changes in object, background brightness and viewing distance. In this paper, we produce four videos that have four different background brightness and two different viewing distances to solve analyze the visual discomfort from watching 3D contents. We measure and analyze eye-blink and saccadic movement, saccadic latency, Nearest Point of Convergence (NPC), and participant survey for amore accurate result compared to previous researches. Our results show that the eye-blink rate and saccadic latency increase when the background is bright and viewing distance is close while the saccadic movement decreases in the same environment. However, NPC only changes when the background brightness changes. We confirm that the bright background and near viewing distance create greater visual discomfort and decrease depth perception abilities.