3D TV 시청에 있어서 시청 피로

Visual fatigue in Watching 3 Dimension Television

  • 윤정호 (춘해보건대학교 안경광학과) ;
  • 이익한 (경북과학대학교 안경광학과) ;
  • 김대현 (경북과학대학교 안경광학과) ;
  • 김재도 (경운대학교 안경광학과)
  • Yoon, Jeong Ho (Department of Ophthalmic Optics, Choonhae College of Health Science) ;
  • Lee, Ikhan (Department of Optometry, Kyungbuk Science University) ;
  • Kim, Taehyun (Department of Optometry, Kyungbuk Science University) ;
  • Kim, Jae-Do (Department of Optometry and Vision Science, Kyungwoon University)
  • 투고 : 2011.11.07
  • 심사 : 2012.03.17
  • 발행 : 2012.03.31

초록

목적: 본 연구는 장시간 3D TV 시청 경험과 단시간 TV 시청 경과에 따른 시청피로를 평가하기 위함이다. 방법: 98명의 성인(여자12 명과 남자86명)으로 실시하였으며, 이들의 나이는 $33.5{\pm}5.5$세(22세~51세)였다. 대상자는 52인치 2D와 3D LED TV(shutter glasses 방식)를 2.7 m 거리에서 대상자가 주로 착용하는 안경 또는 콘택트렌즈를 착용한 상태에서 65분간 2D TV와 3D TV를 각각 시청하게 하였다. 시청피로도 평가를 위해 3D와 2D를 시청하는 동안 11개 항목, 눈의 당김, 눈의 통증, 눈건조, 눈의 따끔거림, 눈물, 눈부심, 흐림, 복시, 눈피로, 두통, 어지럼 등을 0에서 3의 점수로 평가하였다. 결과: 시청피로의 평균점수는 3D 시청시작 후 5분, 25분, 45분, 65분에서 각각 $2.08{\pm}2.14$, $3.19{\pm}3.02$, $3.40{\pm}3.37$, $3.53{\pm}3.07 $으로 나타났고, 2D 시청 시작 후는 각각$0.40{\pm}1.03$, $0.22{\pm}0.70$, $0.22{\pm}0.58$, 그리고 $0.17{\pm}0.52$으로 나타났다. 3D TV 시청 시 시청피로가 2D TV 시청 시 피로 보다 전체 영역에서 유의적인 수준에서 높게 나타났다(paired t-test, p < 0.001). 3D TV 시청 피로는 65분간 유의적인 수준에서 증가하였으며(RM-ANOVA, p < 0.001), 25분까지는 유의적 수준에서 증가하였고(paired t-test, p < 0.001), 그 후부터 서서히 증가하였다. 시청경험과 시청피로에 있어서 눈부심, 복시, 흐림, 어지럼은 시청 경험의 증가할수록 감소하였으나 (ANOVA, all F(1, 96) = 4.500, all p <0.05) 다른 증상에 있어서는 유의한 차이가 없었다(F(1,96) = 0.033, all p >0.05) 결론: 3D TV 시청에 있어서 시청피로는 2D에서 보다 높았으며, 25분까지 증가하였다. 3D 시청 경험과 자각증상 정도와의 관계에 있어서는 자각증상에 따라 다르게 나타났다.

Purpose: This study was to evaluate visual fatigue with passing of watching 3D TV in short term and with experience of watching 3DTV in long term. Methods: 98 adult subjects aged $33.5{\pm}5.5$ years (22 to 51 years; 12 females and 86 males) agreed to participate in this study. Subjects were asked to watch 52 inch LED 2D and 3D television (Shutter glasses method) at 2.7 meters for 65minutes with wearing their habitual glasses or contact lenses. For evaluating visual fatigue, subjects were verbally responded to 11 questions : eye straining, eye paining, dry eye, sore eye, watery eye, photophobia, blur vision, diplopia, eye fatigue, headache, and dizziness with scale 0 to 3 at each measurement while watching 3D and 2D TV. Results: The mean scores of visual fatigue were $2.08{\pm}2.14$, $3.19{\pm}3.02$, $3.40{\pm}3.37$, $3.53{\pm}3.07 $for after 5 minutes, 25 minutes, 45 minutes, and 65 minutes respectively for 3D TV, and $0.40{\pm}1.03$, $0.22{\pm}0.70$, $0.22{\pm}0.58$, and $0.17{\pm}0.52$ after 25, 45, and 65 minutes respectively for 2D TV. Visual fatigue for watching 3D TV was significantly higher than for watching 2D TV at all measurements sessions (paired t-test, p < 0.001). The visual fatigue significantly increased during watching 3D TV for 65 minutes (p < 0.001, RM-ANOVA). The visual fatigue during watching 3D TV was significantly increased until 25 minutes (paired t-test, p < 0.001), stable after that. For correlation between visual fatigue and 3D watching experience, the more 3D watching experiences were significantly the less visual fatigues in photophobia, blur vision, diplopic and dizzy symptoms (ANOVA, all F(1, 96) = 4.500, all p < 0.05), but there was not significantly different in the other symptoms (ANOVA, F (1, 96) = 2.123, p = 0.148). Conclusions: Visual fatigue for watching 3D TV was higher than for watching 2D TV, increase by 25 minutes. It was different by symptoms for correlation between visual fatigue and 3D watching experience.

키워드

참고문헌

  1. Marc T. M. Lambooij, Wijnand A. IJsselsteijn, and Ingrid Heynderickx, "Visual discomfort in stereoscopic displays: a review", Journal of Imaging Science and Technology, 6490:1-13(2007).
  2. Peli E., "The visual effects of head-mounted display (HMD) are not distinguishable from those of desk-top computer display", Vision Research, 38(13):2053-2066(1998). https://doi.org/10.1016/S0042-6989(97)00397-0
  3. Andrew J. Woods, Neil A. Dodgson, John O. Merritt, Mark T. Bolas, and Ian E. Mcdowall, "Effect of disparity and motion on visual comfort of stereoscopic images", Proc. SPIE, 6055:94-103(2006).
  4. Yano S., Emoto M., and Mitsuhashi T., "Two factors in visual fatigue caused by stereoscopic HDTV images", Displays, 25(4):141-150(2004). https://doi.org/10.1016/j.displa.2004.09.002
  5. Wopking M., "Viewing comfort with stereoscopic pictures: an experimental study on the subjective effects of disparity magnitude and depth of focus", Journal of the Society for Information Display, 3(3):101-103(1995). https://doi.org/10.1889/1.1984948
  6. Schor C. M., and Kotulak J. C., "Dynamic interactions between accommodation and convergence are velocity sensitive", Vision Res., 26(6):927-942(1986). https://doi.org/10.1016/0042-6989(86)90151-3
  7. Emoto M., Niida T., and Okano F., "Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television", Journal of Display Technology, 1(2):328-340(2005). https://doi.org/10.1109/JDT.2005.858938
  8. Sheard C., "The prescription of prism", American Journal of Optometry, 11(10):364-378(1934). https://doi.org/10.1097/00006324-193410000-00001
  9. WIKIPEDIA, "Optimum HDTV viewing distance"(2009), http://en.wikipedia.org/wiki/Optimum_HDTV_viewing_distance#cite_note-electric1-16(2009.11.29.).
  10. Eadie A. S., Gray L. S., Carlin P., and Mon-Williams M., "Modelling adaptation effects in vergence and accommodation after exposure to a simulated virtual reality stimulus", Ophthalmic Physiol. Opt., 20(3):242-251(2000). https://doi.org/10.1016/S0275-5408(99)00057-5
  11. Hoffman D. M., Girshick A. R., Akeley K., and Banks M. S., "Vergence-accommodation conflicts hinder visual performance and cause visual fatigue", J. Vision., 8(3):1-30 (2008). https://doi.org/10.1167/8.3.1
  12. Wann J. P., Rushton S., and Mon-Williams M., "Natural problems for stereoscopic depth perception in virtual environments", Vision Res., 35(19):2731-2736(1995). https://doi.org/10.1016/0042-6989(95)00018-U
  13. Okada Y., Ukai K., Wolffsohn J. S., Gilmartin B., Iijima A., and Bando T., "Target spatial frequency determines the response to conflicting defocus-and convergence-driven accommodative stimuli", Vision Res., 46(4):475-484(2006). https://doi.org/10.1016/j.visres.2005.07.014
  14. Lambooij M., IJsselsteijn W., Fortuin M., and Heynderickx I., "Visual discomfort and visual fatigue of stereoscopic displays: a Review", J. Imaging Sci. Technology, 53(3):30201-30214(2009). https://doi.org/10.2352/J.ImagingSci.Technol.2009.53.3.030201
  15. Suryakumar R., and Bobier W. R., "Gain and movement time of convergence-accommodation in preschool children", Optom. Vision Sci., 81(11): 835-843(2004). https://doi.org/10.1097/01.OPX.0000145026.42124.FC
  16. Howard I. P., "Seeing in Depth, Vol.1: Basic Mechanisms", Porteous, Toronto, pp. 1-43(2002).
  17. Gothwal V. K., Wright T. A., Lamoureux E. L., and Pesudovs K., "Guttman scale analysis of the distance vision scale", Invest. Ophthalmol. Vis. Sci., 50(9):4496-4501(2009). https://doi.org/10.1167/iovs.08-3330
  18. Blakemore C., and Campbell F. W., "On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal image", J. Physiol., 203(1):237-260(1969). https://doi.org/10.1113/jphysiol.1969.sp008862