• Title/Summary/Keyword: 3D volume reconstruction

Search Result 114, Processing Time 0.025 seconds

Hybrid Model Representation for Progressive Indoor Scene Reconstruction (실내공간의 점진적 복원을 위한 하이브리드 모델 표현)

  • Jung, Jinwoong;Jeon, Junho;Yoo, Daehoon;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.37-44
    • /
    • 2015
  • This paper presents a novel 3D model representation, called hybrid model representation, to overcome existing 3D volume-based indoor scene reconstruction mechanism. In indoor 3D scene reconstruction, volume-based model representation can reconstruct detailed 3D model for the narrow scene. However it cannot reconstruct large-scale indoor scene due to its memory consumption. This paper presents a memory efficient plane-hash model representation to enlarge the scalability of the indoor scene reconstruction. Also, the proposed method uses plane-hash model representation to reconstruct large, structural planar objects, and at the same time it uses volume-based model representation to recover small detailed region. Proposed method can be implemented in GPU to accelerate the computation and reconstruct the indoor scene in real-time.

NEW QUANTITATIVE MEASURING TECHNIQUE FOR MICROLEAKAGE OF THE RESTORED TOOTH THROUGH 3D RECONSTRUCTION (3차원 재구성법을 이용한 수복물의 정량적 미세누출도 측정)

  • Ha, Sang-Yoon;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.413-422
    • /
    • 2004
  • Established microleakage tests have their own disadvantages. In this study, 3D reconstruction method was tried to overcome these disadvantages. Four types of microleakage tests were used and relationships among them were estimated: penetrated dye volume: marginal adaptability: degree of dye penetration and relative penetrated length to cavity wall. Twenty-four Class V cavities were bulk filled with composite (Esthet X) following surface treatments: N group (no treatment): E group (etching only): T group (etching + Prime & Bond NT). 50% silver nitrate was used as a dye solution after thermocycling ($5^{\circ}C{\;}&{\;}55^{\circ}C$, 1.000 times). Teeth were serially ground with a thickness of 0.2 mm. Volume of dye penetration was estimated from a three-dimensionally reconstructed image with a software (3D-DOCTOR). Percentage of margin without gap was estimated from SEM and degree of dye penetration and the relative length of dye penetration to overall cavity wall were also estimated. ANOVA and Scheffe test for dye volume, Kruskal-Wallis and Mann-Whitney test for marginal quality, Spearman's rho test for checking of relationships among methods were used. The results were as follows: 1. Dye penetration could be seen from several directions, furthermore, its volumetric estimation was possible. 2. Reverse relationship was found between dye volume and marginal quality (r = -0.881/ p = 0.004). 3. Very low relationship was seen between dye volume and two-dimensional tests (degree of dye penetration and relative length). However, 2D evaluation methods showed high relationship (p = 0.002-0.054) each other. 4. Three times vertical section could be recommended as a 2D test.

Reconstruction of Color-Volume Data for Three-Dimensional Human Anatomic Atlas (3차원 인체 해부도 작성을 위한 칼라 볼륨 데이터의 입체 영상 재구성)

  • 김보형;이철희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.199-210
    • /
    • 1998
  • In this paper, we present a 3D reconstruction method of color volume data for a computerized human atlas. Binary volume rendering which takes the advantages of object-order ray traversal and run-length encoding visualizes 3D organs at an interactive speed in a general PC without the help of specific hardwares. This rendering method improves the rendering speed by simplifying the determination of the pixel value of an intermediate depth image and applying newly developed normal vector calculation method. Moreover, we describe the 3D boundary encoding that reduces the involved data considerably without the penalty of image quality. The interactive speed of the binary rendering and the storage efficiency of 3D boundary encoding will accelerate the development of the PC-based human atlas.

  • PDF

Gross tumor volume dependency on phase sorting methods of four-dimensional computed tomography images for lung cancer

  • Lee, Soo Yong;Lim, Sangwook;Ma, Sun Young;Yu, Jesang
    • Radiation Oncology Journal
    • /
    • v.35 no.3
    • /
    • pp.274-280
    • /
    • 2017
  • Purpose: To see the gross tumor volume (GTV) dependency according to the phase selection and reconstruction methods, we measured and analyzed the changes of tumor volume and motion at each phase in 20 cases with lung cancer patients who underwent image-guided radiotherapy. Materials and Methods: We retrospectively analyzed four-dimensional computed tomography (4D-CT) images in 20 cases of 19 patients who underwent image-guided radiotherapy. The 4D-CT images were reconstructed by the maximum intensity projection (MIP) and the minimum intensity projection (Min-IP) method after sorting phase as 40%-60%, 30%-70%, and 0%-90%. We analyzed the relationship between the range of motion and the change of GTV according to the reconstruction method. Results: The motion ranges of GTVs are statistically significant only for the tumor motion in craniocaudal direction. The discrepancies of GTV volume and motion between MIP and Min-IP increased rapidly as the wider ranges of duty cycles are selected. Conclusion: As narrow as possible duty cycle such as 40%-60% and MIP reconstruction was suitable for lung cancer if the respiration was stable. Selecting the reconstruction methods and duty cycle is important for small size and for large motion range tumors.

3D Reconstruction of Color Volume Data (칼라 볼륨 데이터의 3차원 입체 영상 재구성)

  • Kim, Bo-Hyoung;Lee, Cheol-Hi;Jung, Dong-Kyun;Shin, Yeong-Gil;Kim, Jong-Hyo;Kang, Heung-Sik
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.197-200
    • /
    • 1997
  • In this paper, we present a 3D reconstruction method of color volume data or a computerized human atlas. Binary volume rendering which takes the advantages of shear-warp factorization and new normal vector calculation method visualizes 3D organs in real time. Various manipulations such as rotation, multiple object rendering, removal, and transparency effect improve the usefulness and comprehensiveness of the computerized atlas.

  • PDF

THREE-DIMENSIONAL VOLUME RECONSTRUCTION BASED ON MODIFIED FRACTIONAL CAHN-HILLIARD EQUATION

  • CHOI, YONGHO;LEE, SEUNGGYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.203-210
    • /
    • 2019
  • We present the three-dimensional volume reconstruction model using the modified Cahn-Hilliard equation with a fractional Laplacian. From two-dimensional cross section images such as computed tomography, magnetic resonance imaging slice data, we suggest an algorithm to reconstruct three-dimensional volume surface. By using Laplacian operator with the fractional one, the dynamics is changed to the macroscopic limit of Levy process. We initialize between the two cross section with linear interpolation and then smooth and reconstruct the surface by solving modified Cahn-Hilliard equation. We perform various numerical experiments to compare with the previous research.

Computational Technique of Volumetric Object Reconstruction in Integral Imaging by Use of Real and Virtual Image Fields

  • Shin, Dong-Hak;Cho, Myung-Jin;Park, Kyu-Chil;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.708-712
    • /
    • 2005
  • We propose a computational reconstruction technique in large-depth integral imaging where the elemental images have information of three-dimensional objects through real and virtual image fields. In the proposed technique, we reconstruct full volume information from the elemental images through both real and virtual image fields. Here, we use uniform mappings of elemental images with the size of the lenslet regardless of the distance between the lenslet array and reconstruction image plane. To show the feasibility of the proposed reconstruction technique, we perform preliminary experiments and present experimental results.

  • PDF

The study of the stereo X-ray system for automated X-ray inspection system using 3D-reconstruction shape information (3차원 형상복원 정보 기반의 검색 자동화를 위한 스테레오 X-선 검색장치에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2043-2050
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. As a radiation image is just the density information of the scanned object, the direct application of general stereo image processing techniques is inefficient. So we propose that a new volume-based 3-D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for X-ray inspection. For validation of the proposed shape reconstruction algorithm using volume, 15 samples were scanned and reconstructed to restore the shape using an X-ray stereo inspection system. Reconstruction results of the objects show a high degree of accuracy compared to the width (2.56%), height (6.15%) and depth (7.12%) of the measured value for a real object respectively. In addition, using a K-Mean clustering algorithm a detection efficiency of 97% is achieved. The results of the reconstructed shape information using the volume based shape reconstruction algorithm provide the depth information of the inspected object with stereo X-ray inspection. Depth information used as an identifier for an automated search is possible and additional studies will proceed to retrieve an X-ray inspection system that can greatly improve the efficiency of an inspection.

A Study on Speed Improvement of Medical Image Reconstruction Using Limited Range Process (부분영역처리를 이용한 영상재구성의 속도개선에 관한 연구)

  • Ryu, Jong-Hyun;Beack, Seung-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.658-663
    • /
    • 1999
  • 2D sliced CT images hardly express the human disease in a space. This space expression can be reconstructed into 3D image by piling up the CT sliced image in succession. In medical image, in order to get the reconstructed 3D images, expensive system or much calculation time is needed. But by changing the method of reconstruction procedure and limit the range, the reconstruction time could be reduced. In this study, to reduce the processing time and memory, we suggested a method of interpolation and ray casting processing at the same time in a limited range. Such a limited range processing have advantages that we could reduce the unnecessary interpolation and ray casting. Through a experiment, it is founded that the reconstruction time and the memory was much reduced.

  • PDF

A MODIFIED CAHN-HILLIARD EQUATION FOR 3D VOLUME RECONSTRUCTION FROM TWO PLANAR CROSS SECTIONS

  • Lee, Seunggyu;Choi, Yongho;Lee, Doyoon;Jo, Hong-Kwon;Lee, Seunghyun;Myung, Sunghyun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, we present an implicit method for reconstructing a 3D solid model from two 2D cross section images. The proposed method is based on the Cahn-Hilliard model for the image inpainting. Image inpainting is the process of reconstructing lost parts of images based on information from neighboring areas. We treat the empty region between the two cross sections as inpainting region and use two cross sections as neighboring information. We initialize the empty region by the linear interpolation. We perform numerical experiments demonstrating that our proposed method can generate a smooth 3D solid model from two cross section data.