• Title/Summary/Keyword: 3D viewing environment

Search Result 36, Processing Time 0.025 seconds

The Effects of Recording Distance and Viewing Distance on Presence, Perceptual Characteristics, and Negative Experiences in Stereoscopic 3D Video

  • Lee, Sanguk;Chung, Donghun
    • Journal of Broadcast Engineering
    • /
    • v.24 no.7
    • /
    • pp.1189-1198
    • /
    • 2019
  • The study explores the effects of recording and viewing distances in stereoscopic 3D on presence, perceptual characteristics, and negative experiences. Groups of 20 participants were randomly assigned to each of the three viewing distances, and all participants were exposed to five versions of the stereoscopic 3D music video that differs in recording distance. The results showed that first, viewers felt a higher experience of presence and had a better perception of objects positioned near the cameras. Second, viewers felt a greater perception of screen transmission as the viewing distance increased. Finally, viewers felt a greater negative experiences due to the joint effects of recording and viewing distance. As investigating the influence of stereoscopic 3D content and viewing environments on psychological factors, the study expects to provide a guideline of human factors in 3D.

A New 3D Depth Reconstruction Method Adaptive to Various Environments (환경 적응적 3D 깊이 재구성 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.271-279
    • /
    • 2016
  • The recent development of the HD (High Definition) and UHD (Ultra High Definition) technology allowed the growth of 3D contents market. Yet the majority of the 3D contents in the market are strictly for 6.5 cm inter-ocular distance, causing various visual discomforts for the viewers who have different inter-ocular distance. Moreover, because the 3D contents are created for a fixed viewing distance, the change of the viewing distances when watching 3D contents can also cause visual conflicts. To solve this problem, we devised techniques that consider the environmental information of the viewer watching 3D contents. By analyzing the relationship between viewing distance, inter-ocular distance, and perceived depth, we created an adaptive content viewing system that reflects the viewer's environment to minimize any conflicts in watching 3D contents. From our experiments, we found that the performance of our adaptive content viewing system was reasonable.

Eye Movement-based Visual Discomfort Analysis from Watching Stereoscopic 3D Contents Regarding Brightness and Viewing Distance (눈 움직임을 이용한 밝기와 시청거리에 따른 3D 콘텐츠 피로도 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1723-1737
    • /
    • 2016
  • When watching 3D contents, people often experience various visual discomforts like tiredness, dryness, headaches, and dizziness. Previous researches on visual discomfort analyzed and concluded vergence-accommodation conflict, viewing distance, and brightness changes to be the causes of visual discomfort. Yet it is necessary to systematically analyze the visual discomfort due to the changes in object, background brightness and viewing distance. In this paper, we produce four videos that have four different background brightness and two different viewing distances to solve analyze the visual discomfort from watching 3D contents. We measure and analyze eye-blink and saccadic movement, saccadic latency, Nearest Point of Convergence (NPC), and participant survey for amore accurate result compared to previous researches. Our results show that the eye-blink rate and saccadic latency increase when the background is bright and viewing distance is close while the saccadic movement decreases in the same environment. However, NPC only changes when the background brightness changes. We confirm that the bright background and near viewing distance create greater visual discomfort and decrease depth perception abilities.

Stereoscopic 3D Modelling Approach with KOMPSAT-2 Satellite Data

  • Tserennadmid, T.;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2009
  • This paper investigates stereo 3D viewing for linear pushbroom satellite images using the Orbit-Attitude Model proposed by Kim (2006) and using OpenGL graphic library in Digital Photogrammetry Workstation. 3D viewing is tested with KOMPSAT-2 satellite stereo images, a large number of GCPs (Ground control points) collected by GPS surveying and orbit-attitude sensor model as a rigorous sensor model. Comparison is carried out by two accuracy measurements: the accuracy of orbit-attitude modeling with bundle adjustment and accuracy analysis of errors in x and y parallaxes. This research result will help to understand the nature of 3D objects for high resolution satellite images, and we will be able to measure accurate 3D object space coordinates in virtual or real 3D environment.

Subjective evaluation of wide-viewing-angle stereoscopic contents in a dome theater

  • Yoon, H.;Abe, N.;Ohta, K.;Kawai, T.;Suzuki, S.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.153-158
    • /
    • 2011
  • This study was conducted for the purpose of evaluating the impressions gained by the members of the audience who have seen contents in a dome theater, based on their seating positions. Dome Theater Gaia provided the environment where the contents for evaluation were to be presented, and enquete (survey) was used as the investigative method. The survey results showed that the presentation of wide-viewing-angle three-dimensional (3D) contents proved effective in enhancing the 3D effect and the presence in a dome theater. Moreover, the study results confirmed that in relation to the impression evaluation of the contents for different seating positions, the optimal seating position varied according to the presentation method of the 3D and 2D contents.

STUDY ON 3-D VIRTUAL REALITY FOR STEREOSCOPIC VISUALIZATION OF FLOW FIELD DATA (유동장 데이터의 입체적 가시화를 위한 3-D 가상현실 기법의 적용)

  • Ha, J.H.;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.347-351
    • /
    • 2010
  • In this paper, our effort to apply 3-D Virtual Reality system for stereoscopic visualization of flow data is briefly described. This study is an extension of our previous and on-going research efforts to develop DATA(Data Analysis and Visualization Application) program, which is a data visualization program developed by using Qt as GUI development environment and OpenGL as graphic library. The program is developed upon the framework of object-oriented programming and it was originally developed by using Qt 3.3.3 environment. In this research the program is converted into a Qt 4.3.3-compatible version, and this new version is developed on Visual Studio 2005. And to achieve a stereoscopic viewing capability, two graphic windows are used to render its own viewing image for the lift and right eye respectively. These two windows are merged into one image using 3D monitor and the viewers can see the data visualization results with stereoscopic depth effects by using polarizing glasses. In this paper three dimensional data visualization with stereoscopic technique combined with 3D Monitor is demonstrated, and the current achievement would be a good start-up for further development of low-cost high-quality stereoscopic data visualization system.

  • PDF

Innovative Method to Expand a Degree of Freedom of Observation in the Depth Direction without Losses of the Horizontal Number of Views in Autostereoscopic Multi-Views 3D Display System (시차장벽식 무안경 다시점 입체디스플레이 시스템에서 수평방향의 시점 수 저하 없이 깊이방향의 자유도를 증가시키기 위한 혁신적 방법)

  • Lee, Kwang-Hoon;Park, Min-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.903-910
    • /
    • 2013
  • An autostereoscopic multi-view 3D display system has the narrower degrees of freedom in the observational directions, such as the horizontal and perpendicular directions to the display plane, than the glasses-on type of 3D display. In this paper, we propose an innovative method to expand the width of the viewing zone formed in the depth direction while maintaining the number of views in the horizontal direction by using a triple segmented-slanted parallax barrier (TS-SPB) in the glasses-off type of 3D display. The validity of the proposal was verified by an optical simulation based on an environment similar to an actual case. The maximum number of views that can be displayed in the horizontal direction is 2n, and the width of the viewing zone with depth increased up to a factor of 3.36 compared to the existing one-layered parallax barrier system.

A Study on developing of the Java-3D based Viewer for 3D Modeling Data (Java3D로 구현한 모델링 데이터 뷰어)

  • 김희중;김정욱;정재현
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.201-204
    • /
    • 2002
  • This study is for developing of the viwer that using Java3D API to viewing the modeling data from 3D CAD/CAM applications. For this Java3D is chosen for platform independent applying and distributed manufacturing environment. The developing system will be working with various modeling data of 3D shape for design and manufacturing on generic computer systems.

  • PDF

Virtual Reality Sickness Assessment based on Difference between Head Movement Velocity and Virtual Camera Motion Velocity (사용자 머리 움직임 속도와 가상 카메라 움직임 속도 간 차이에 따른 VR 멀미 측정)

  • Kim, DongUn;Jung, Yong Ju
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.110-116
    • /
    • 2019
  • Virtual reality (VR) sickness can have an influential effect on the viewing quality of VR 3D contents. Particularly, watching the 3D contents on a head-mounted display (HMD) could cause some severe level of visual discomfort. Despite the importance of assessing the VR sickness, most of the recent studies have focused on unveiling the reason of inducing VR sickness. In this paper, we subjectively measure the level of VR sickness induced in the viewing of omnidirectional 3D graphics contents in HMD environment. Apart from that, we propose an objective assessment model that estimates the level of induced VR sickness by calculating the difference between head movement velocity and global camera motion velocity.

Effects of the Convergence Training on Reduction of Visual Discomfort in 3D TV Environment (3D TV 시청 환경에서 수렴 훈련에 의한 시각적 불편감의 감소)

  • Kham, Keetaek;Jeon, Hyunmin
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.738-748
    • /
    • 2013
  • The present study investigated whether convergence training in which has an effect on reducing visual discomfort in viewing 3D TV. The stereoscopic depth of 3D training stimulus was gradually increased while maintaining individual visual discomfort at a minimum value. Participants were randomly assigned into one of three groups: a control group and two training groups. For both training groups, all procedure and the disparity range of training stimuli were the same except the order of the disparities of training stimuli. One of the two different training procedure was provided: gradual change or random change of the disparities of training stimulus. Training itself was very effective so that convergence fusional range was improved after three sessions of training with intervals of two weeks. In order to evaluate the effect of convergence training on visual discomfort, the subjective visual discomfort in 3D TV viewing was measured before and after training sessions using questionnaire. The results showed that a significant reduction in visual discomfort was found after training only in the group of gradual change. These results demonstrated a repeated convergence training might be helpful in reducing the visual discomfort in 3D TV environment.