• Title/Summary/Keyword: 3D surface model

Search Result 1,217, Processing Time 0.032 seconds

3D Surface Model Generation of Micro Structure by Self Calibration of The SEM Image (SEM 영상의 자체검정에 의한 미세구조물의 3차원 표면모델 생성)

  • 이효성;박형동
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.151-159
    • /
    • 2003
  • This study presents method for self-calibration of the SEM(Scanning Electron Microscope) stereo image using the standard microprobe with same grid pattern and using parallel and central perspective projection equation. Result showed that parallel projection method is more suitable for standard microprobe. The maximum error of 3D coordinates acquired by this method did not exceed 5 $\mu\textrm{m}$, and DSM(Digital Surface Model) for three dimensional measurement of the rock sample was generated by the digital photogrammetry. This result can be used for quantification of micro scale change of shape and analysis of the micro morphology of rock due to weathering.

  • PDF

담수호 저층배수시설 방류구 위치선정을 위한 저층방류수 해양수중 혼합특성해석

  • Park, Yeong-Wook;Khu, Bon-Chung;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.272-277
    • /
    • 2005
  • Initial mixing characteristics in near field regions were analyzed by FLOW-3D, for analyzing mixing behavior of submerged discharge from freshwater lake in sea water. FLOW-3D model was applied to the region near Geum-ho dike for its verification. Simulation results from FLOW-3D were compared to the observed data for the verification periods. FLOW-3D showed resonable prediction results compared to the observed data, except underestimation in area near outfall. Particularly, FLOW-3D showed a good prediction for movement of buoyancy jets. In addition, FLOW-3D model was applied to the region near Saemangeum dike, which is to be constructed in near future. It was expected that the results of model application to Saemangeum area could provide substantial information in planning submerged discharge facilities. Based on the model applications to Saemangeum area, it was recommended that outfall should be located to the distance which gave an enough depth of outfall from water surface.

  • PDF

Object Recognition Using Planar Surface Segmentation and Stereo Vision

  • Kim, Do-Wan;Kim, Sung-Il;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1920-1925
    • /
    • 2004
  • This paper describes a new method for 3D object recognition which used surface segment-based stereo vision. The position and orientation of an objects is identified accurately enabling a robot to pick up, even though the objects are multiple and partially occluded. The stereo vision is used to get the 3D information as 3D sensing, and CAD model with its post processing is used for building models. Matching is initially performed using the model and object features, and calculate roughly the object's position and orientation. Though the fine adjustment step, the accuracy of the position and orientation are improved.

  • PDF

3D Shape Reconstruction of Cross-sectional Images using Image Processing Technology and B-spline Approximation (영상 처리 기법과 B-spline 근사화를 이용한 단면영상의 3차원 재구성)

  • 임오강;이진식;김종구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.93-100
    • /
    • 2001
  • The three dimensional(3D) reconstruction from two dimensional(2D) image data is using in many fields such as RPD(Rapid Product Development) and reverse engineering. In this paper, the main step of 3D reconstruction is comprised of two steps : image processing step and B-spline surface approximation step. In the image processing step, feature points of each cross-section are obtained by means of several image processing technologies. In the B-spline surface approximation step, using the data of feature points obtained in the image processing step, the control points of B-spline surface are obtained, which are used for IGES file of 3D CAD model.

  • PDF

Reconstruction of 3D Brain Model using Curvature Information (곡률 정보를 이용한 뇌의 3차원 모델 구성)

  • An, Kwang-Ok;Jung, Hyun-Kyo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2008
  • In order to study cortical properties in human, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Among many approaches, surface-based method that reconstructs a 3-D model from contour lines on cross-section images is widely used. The conventional method detects match points of contours using the minimum straight distance between any pair of contour points which lie on different contours. Then, it generates a triangle strip. In general, however, it might yield small mismatches between contours in case of brain due to complex anatomical structures. In this paper, therefore, we present an improved method for tilting operation that uses the curvature values calculated from surface information. The usefulness of the proposed method has been verified using brain image.

On Constructing NURBS Surface Model from Scattered and Unorganized 3-D Range Data (정렬되지 않은 3차원 거리 데이터로부터의 NURBS 곡면 모델 생성 기법)

  • Park, In-Kyu;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.17-30
    • /
    • 2000
  • In this paper, we propose an efficient algorithm to produce 3-D surface model from a set of range data, based on NURBS (Non-Uniform Rational B-Splines) surface fitting technique. It is assumed that the range data is initially unorganized and scattered 3-D points, while their connectivity is also unknown. The proposed algorithm consists of three steps: initial model approximation, hierarchical representation, and construction of the NURBS patch network. The mitral model is approximated by polyhedral and triangular model using K-means clustering technique Then, the initial model is represented by hierarchically decomposed tree structure. Based on this, $G^1$ continuous NURBS patch network is constructed efficiently. The computational complexity as well as the modeling error is much reduced by means of hierarchical decomposition and precise approximation of the NURBS control mesh Experimental results show that the initial model as well as the NURBS patch network are constructed automatically, while the modeling error is observed to be negligible.

  • PDF

Generating Cartesian Tool Paths for Machining Sculptured Surfaces from 3D Measurement Data (3차원 측정자료부터 자유곡면의 가공을 위한 공구경로생성)

  • Ko, Byung-Chul;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.123-137
    • /
    • 1993
  • In this paper, an integrated approach is proposed to generate gouging-free Cartesian tool paths for machining sculptured surfaces from 3D measurement data. The integrated CAD/CAM system consists of two modules : offset surface module an Carteian tool path module. The offset surface module generates an offset surface of an object from its 3D measurement data, using an offsetting method and a surface fitting method. The offsetting is based on the idea that the envelope of an inversed tool generates an offset surface without self-intersection as the center of the inversed tool moves along on the surface of an object. The surface-fitting is the process of constructing a compact representation to model the surface of an object based on a fairly large number of data points. The resulting offset surtace is a composite Bezier surface without self-intersection. When an appropriate tool-approach direction is selected, the tool path module generates the Cartesian tool paths while the deviation of the tool paths from the surface stays within the user-specified tolerance. The tool path module is a two-step process. The first step adaptively subdivides the offset surface into subpatches until the thickness of each subpatch is small enough to satisfy the user-defined tolerance. The second step generates the Cartesian tool paths by calculating the intersection of the slicing planes and the adaptively subdivided subpatches. This tool path generation approach generates the gouging-free Cartesian CL tool paths, and optimizes the cutter movements by minimizing the number of interpolated points.

  • PDF

Geometrical Modeling for Hybrid 3-D Braided Composites (하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링)

  • 한문희;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

Sell-modeling of Cylindrical Object based on Generic Model for 3D Object Recognition (3 차원 물체 인식을 위한 보편적 지식기반 실린더형 물체 자가모델링 기법)

  • Baek, Kyeong-Keun;Park, Yeon-Chool;Park, Joon-Young;Lee, Suk-Han
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.210-214
    • /
    • 2008
  • It is actually impossible to model and store all objects which exist in real home environment into robot's database in advance. To resolve this problem, this paper proposes new object modeling method that can be available for robot self-modeling, which is capable of estimating whole model's shape from partial surface data using Generic Model. And this whole produce is conducted to cylindrical objects like cup, bottles and cans which can be easily found at indoor environment. The detailed process is firstly we obtain cylinder's initial principle axis using points coordinates and normal vectors from object's surface after we separate cylindrical object from 3D image. This 3D image is obtained from 3D sensor. And second, we compensate errors in the principle axis repeatedly. Then finally, we do modeling whole cylindrical object using cross sectional principal axis and its radius To show the feasibility of the algorithm, We implemented it and evaluated its accuracy.

  • PDF

Development of Automated J-Integral Analysis System for 3D Cracks (3차원 J적분 계산을 위한 자동 해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.74-79
    • /
    • 2000
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic nonlinear analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The complete finite element(FE) model generated, and a stress analysis is performed. In this system, burden to analysts fur introducing 3D cracks to the FE model as well as fur estimating their fracture mechanics parameters can be dramatically reduced. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

  • PDF