• 제목/요약/키워드: 3D surface model

검색결과 1,202건 처리시간 0.026초

CFD as a seakeeping tool for ship design

  • Kim, Sun-Geun Peter
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.65-71
    • /
    • 2011
  • Seakeeping analysis has progressed from the linear frequency-domain 2D strip method to the nonlinear timedomain 3D panel method. Nevertheless, the violent free surface flows such as slamming and green water on deck are beyond the scope of traditional panel methods based on potential theory. Recently, Computational Fluid Dynamics (CFD) has become an attractive numerical tool that can effectively deal with the violent free surface flows. ABS, as a classification society, is putting forth a significant amount of effort to implement the CFD technology to the advanced strength assessment of modern commercial ships and high-speed naval craft. The main objective of this study is to validate the CFD technology as a seakeeping tool for ship design considering fully nonlinear three-dimensional slamming and green water on deck. The structural loads on a large container carrier were successfully calculated from the CFD analysis and validated with segmented model test measurements.

점 데이타의 Rational B-spline 근사를 통한 역공학 (Rational B-spline Approximation of Point Data For Reverse Engineering)

  • 이현직;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.160-168
    • /
    • 1999
  • This paper describes one method of reverse engineering that machines a free form shape without descriptive model. A portable five-axes 3D CMM was used to digitize point data from physical model. After approximation by rational B-spline curve from digitized point data of a geometric shape, a surface was constructed by the skinning method of the cross-sectional design technique. Since a surface patch was segmented by fifteen part, surface merging was also implemented to assure the surface boundary continuity. Finally, composite surface was transferred to commercial CAD/CAM system through IFES translation in order to machine the modeled geometric shape.

  • PDF

Optimum Weight in Spline for Surface Model

  • 손호웅;오석훈;김영경
    • 지구물리
    • /
    • 제8권1호
    • /
    • pp.23-33
    • /
    • 2005
  • The digital surface model (DSM) is used for several purposes in photogrammetry, remote sensing and laser scanned data such as orthoimage production, contours erivation, extraction of height information. Creation of a surface model from point-clouds (3-D sparse points) that can be derived from stereo imagery and range data (e.g. laser scanned data) can be done with several mathematical interpolation models. In this paper, thin-plate-spline (TPS) is used for digital surface modeling. Determination of suitable weight is an important problem in thin-plate function for a surface. The Voronoi algorithm has been proposed as a method for determination of the weight in thin-plate-spline. In this paper, methods has been tested for different surfaces. The results show that thin-plate-spline can be independent of weight.

  • PDF

자유수면 보정기법을 이용한 3차원 천수유동 수치모형 (A three-dimensional numerical model for shallow water flows using a free surface correction method)

  • 장원재;이승오;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.181-185
    • /
    • 2007
  • A free-surface correction(FSC) method is presented to solve the 3-D shallow water equations. Using the mode splitting process, FSC method can simulate shallow water flows under the hydrostatic assumption. For the hydrostatic pressure calculation, the momentum equations are firstly discretized using a semi-implicit scheme over the vertical direction leading to the tri-diagonal matrix systems. A semi-implicit scheme has been adopted to reduce the numerical instability caused by relatively small vertical length scale compare to horizontal one. and, as the free surface correction step the final horizontal velocity fields are corrected after the final surface elevations are obtained. Finally, the vertical final velocity fields can be calculated from the continuity equation. The numerical model is applied to the calculation of the simulation of flow fields in a rectangular open channel with the tidal influence. The comparisons with the analytical solutions show overall good agreements between the numerical results and analytical solutions.

  • PDF

Intraoral scanning of the edentulous jaw without additional markers: An in vivo validation study on scanning precision and registration of an intraoral scan with a cone-beam computed tomography scan

  • Julie Tilly Deferm;Frank Baan;Johan Nijsink;Luc Verhamme;Thomas Maal;Gert Meijer
    • Imaging Science in Dentistry
    • /
    • 제53권1호
    • /
    • pp.21-26
    • /
    • 2023
  • Purpose: A fully digital approach to oral prosthodontic rehabilitation requires the possibility of combining (i.e., registering) digital documentation from different sources. This becomes more complex in an edentulous jaw, as fixed dental markers to perform reliable registration are lacking. This validation study aimed to evaluate the reproducibility of 1) intraoral scanning and 2) soft tissue-based registration of an intraoral scan with a cone-beam computed tomography (CBCT) scan for a fully edentulous upper jaw. Materials and Methods: Two observers independently performed intraoral scans of the upper jaw in 14 fully edentulous patients. The palatal vault of both surface models was aligned, and the inter-observer variability was assessed by calculating the mean inter-surface distance at the level of the alveolar crest. Additionally, a CBCT scan of all patients was obtained and a soft tissue surface model was generated using patient-specific gray values. This CBCT soft tissue model was registered with the intraoral scans of both observers, and the intraclass correlation coefficient(ICC) was calculated to evaluate the reproducibility of the registration method. Results: The mean inter-observer deviation when performing an intraoral scan of the fully edentulous upper jaw was 0.10±0.09 mm. The inter-observer agreement for the soft tissue-based registration method was excellent(ICC=0.94; 95% confidence interval, 0.81-0.98). Conclusion: Even when teeth are lacking, intraoral scanning of the jaw and soft tissue-based registration of an intraoral scan with a CBCT scan can be performed with a high degree of precision.

Texture Mapping을 고려한 Rang Image의 3차원 형상 간략화 (3D Mesh Simplification from Range Image Considering Texture Mapping)

  • 공창환;김창헌
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제3권1호
    • /
    • pp.23-28
    • /
    • 1997
  • 본 논문은 range map과 texture map이 포함된 range image를 삼각형 메쉬로 된 3차원 형상으로 복원하고, 이 삼각형 메쉬를 기하학적 축소 알고리즘을 적용하여 간략화하는 방법에 대하여 기술한다. 그리고 이 논문에는 복원된 3차원 모델에 texture mapping이 가능하고 간략한 정도를 사용자가 쉽게 결정할 수 있으며, 실시간 multiple level-of-detail에 적용 가능한 빠른 속도의 간략화 방법을 제시한다. 구현한 방법을 국보급 문화재를 스캐닝한 실험 데이터에 적용하여 그 유효성을 입증한다.

  • PDF

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

진공침탄에 의한 AISI 4115강의 침탄 거동에 미치는 세멘타이트 석출의 영향 (Effect of Cementite Precipitation on Carburizing Behavior of Vacuum Carburized AISI 4115 Steel)

  • 권기훈;박현준;손윤호;이영국;문경일
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.402-411
    • /
    • 2023
  • In order to examine the effect of cementite precipitated on the steel surface on the carburizing rate, the carburizing process was carried out at various boost times to measure the mass gain and carbon flux, phase analysis and carbon concentration analysis were performed on the surface of the carburized specimen. In the case of the only boost type, the longer the boost time, the more the mass gain by the diffused carbon follows the parabolic law and tends to increase. In particular, as the boost time increased, the depth of cementite precipitation and the average size of cementite on the steel surface increased. At a boost time of 7 min, the fraction of cementite precipitated on the surface is 7.32 vol.%, and the carburizing rate of carbon into the surface (surface-carbon flux) is about 17.4% compared to the calculated value because the area of the chemical (catalyst) where the carburization reaction takes place is reduced. The measured carbon concentration profile of the carburized specimen tended to be generally lower than the carbon concentration calculated by the model without considering precipitated cementite. On the other hand, in the pulse type, the mass gain by the diffused carbon increased according to the boost time following a linear law. At a boost time of 7 min, the fraction of cementite precipitated on the surface was 3.62 vol.%, and the surface-carbon flux decreased by about 4.1% compared to the calculated value. As a result, a model for predicting the actual carbon flux was presented by applying the carburization resistace coefficient derived from the surface cementite fraction as a variable.

DEM 데이타에 의한 3차원 지형 모델링 기법에 관한 연구 (A study on the 3D Terrain Modelling Technique based on DEM data)

  • 최정단;정운종;이철원;윤경현
    • 대한공간정보학회지
    • /
    • 제2권2호
    • /
    • pp.99-108
    • /
    • 1994
  • 본 논문에서는 지형 정보의 나은 이해를 위한 3차원 지형 모델링 방법을 제시한다. 이는 다음의 세단계로 구성된다. 첫 번째 단계는 인공위성의 영상으로부터 데이타를 획득하여 DEM 데이타의 형식으로 저장된다. 두 번째 단계는 상세도 레벨에 근거하여 모델링 데이타를 추출하는 단계이며 세 번째 단계는 추출된 데이타를 이용하여 TIN으로 3차원의 표면을 구성하는 것이다. 제안된 동적 TIN 재구성 알고리즘은 새로이 추가될 점만을 고려하여 기존의 TIN을 지역적인 접근 방법으로서 재구성하는 방법이다. 이러한 방법은 감소된 처리 시간으로 TIN을 재구성하여 3차원 지형의 실시간적인 시뮬레이션을 가능토록 한다.

  • PDF

Meso-scale based parameter identification for 3D concrete plasticity model

  • Suljevic, Samir;Ibrahimbegovic, Adnan;Karavelic, Emir;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.55-78
    • /
    • 2022
  • The main aim of this paper is the identification of the model parameters for the constitutive model of concrete and concrete-like materials capable of representing full set of 3D failure mechanisms under various stress states. Identification procedure is performed taking into account multi-scale character of concrete as a structural material. In that sense, macro-scale model is used as a model on which the identification procedure is based, while multi-scale model which assume strong coupling between coarse and fine scale is used for numerical simulation of experimental results. Since concrete possess a few clearly distinguished phases in process of deformation until failure, macro-scale model contains practically all important ingredients to include both bulk dissipation and surface dissipation. On the other side, multi-scale model consisted of an assembly micro-scale elements perfectly fitted into macro-scale elements domain describes localized failure through the implementation of embedded strong discontinuity. This corresponds to surface dissipation in macro-scale model which is described by practically the same approach. Identification procedure is divided into three completely separate stages to utilize the fact that all material parameters of macro-scale model have clear physical interpretation. In this way, computational cost is significantly reduced as solving three simpler identification steps in a batch form is much more efficient than the dealing with the full-scale problem. Since complexity of identification procedure primarily depends on the choice of either experimental or numerical setup, several numerical examples capable of representing both homogeneous and heterogeneous stress state are performed to illustrate performance of the proposed methodology.