• Title/Summary/Keyword: 3D solid finite element

검색결과 146건 처리시간 0.022초

고속철도 콘크리트 궤도 매립전 내 침투수의 결빙압에 의한 균열손상해석 (Finite Element Analysis of Concrete Railway Sleeper Damaged by Freezing Force of Water Penetrated into the Inserts)

  • 문도영;지광습;김진균;장승엽
    • 한국철도학회논문집
    • /
    • 제14권3호
    • /
    • pp.240-247
    • /
    • 2011
  • 본 연구에서는 콘크리트 궤도 침목 내에 설치되는 인서트에 예기치 못하게 침투된 수분의 결빙압이 앵커볼트의 인발강도에 미치는 영향을 유한요소해석을 통해 고찰하였다. 3차원 유한요소해석모델은 콘크리트 침목의 현장실험 결과, 도면 및 레일체결장치의 제원 실측치를 기반으로 수립되었으며, 비선형구성방정식과 파괴 모델은 측정된 압축강도로부터 CEB-FIP 1990 모델코드를 이용하여 추정하였다. 해석모델의 적정성은 철도기술연구원에서 수행한 현장 인발시험 결과 및 실내시험 결과와의 비교를 통해 확인하였다. 다양한 인자, 즉 결빙위치, 앵커볼트 초기 체결력의 크기 및 콘크리트 압축강도에 따른 해석을 수행하였으며, 그 결과를 제시하였다. 해석결과에 의하면, 매립전내 침투수의 결빙력은 균열손상의 가장 가능성 있는 직접적인 원인 중 하나로 간주될 수 있음을 확인하였다. 또한, 외측매립전의 결빙력이 내측 매립전 보다 작은 것으로 나타났으나 그 차이는 크지 않았다.

Behavior and design of steel I-beams with inclined stiffeners

  • Yang, Yang;Lui, Eric M.
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.183-205
    • /
    • 2012
  • This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam's lateral-torsional buckling capacity when compared to the stiffeners' location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam's bearing capacity but its lateral-torsional buckling strength.

Progressive collapse analysis of a RC building subjected to blast loads

  • Almusallam, T.H.;Elsanadedy, H.M.;Abbas, H.;Alsayed, S.H.;Al-Salloum, Y.A.
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.301-319
    • /
    • 2010
  • The paper seeks to explore some aspects of the current state of knowledge on progressive collapse in the technical literature covering blast loads and structural analysis procedure applicable to reinforced concrete (RC) buildings. The paper describes the progressive collapse analysis of a commercial RC building located in the city of Riyadh and subjected to different blast scenarios. A 3-D finite element model of the structure was created using LS-DYNA, which uses explicit time integration algorithms for solution. Blast loads were treated as dynamic pressure-time history curves applied to the exterior elements. The inherent shortcomings of notional member removal have been taken care of in the present paper by simulating the damage of structural elements through the use of solid elements with the provision of element erosion. Effects of erosion and cratering are studied for different scenarios of the blast.

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

Comparison of the Characteristics in the Surface Mounted Permanent Magnet and Flux Concentrating Coaxial Magnetic Gears Having the Solid Cores

  • Shin, Ho-Min;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1275-1284
    • /
    • 2018
  • The coaxial magnetic gear with the flux concentrating structure is known that it has the torque performance advantage over the coaxial magnetic gear having surface mounted permanent magnet, thanks to the flux focusing effect. But, if the solid cores are used in the modulating pieces and rotor cores to consider the mechanical reliability and cost reduction, the operating torque of the flux concentrating coaxial magnetic gear can be significantly diminished because the iron losses at the solid cores affect the actual transmitted torque. Furthermore, the modulating pieces and rotor cores have different characteristics of the iron losses from one another, because the space harmonic components of the magnetic flux density, which cause the iron losses, are different. Thus, in this paper, we focused on the analysis of the characteristics of the space harmonic components of the magnetic flux density and resultant eddy current losses in the surface mounted PM and flux concentrating coaxial magnetic gears, when these coaxial magnetic gears have the solid cores at the modulating pieces and rotor cores. The characteristics of pull-out torque (static torque), operating torque (dynamic torque), and efficiency are also researched, and compared by the 3D finite element analysis (FEA) and experiment.

3차원 프린팅으로 제작된 다공성 박판 구조물의 굽힘강성 고찰 (Investigation of Bending Stiffness of Porous Shell Structures Fabricated by 3D Printing)

  • 임영은;박근
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.491-497
    • /
    • 2017
  • 최근 3차원 프린팅 기술이 기존의 시작품 제작을 넘어서 직접 제조기술로서의 잠재력을 보이면서 많은 관심을 받고 있다. 3차원 프린팅은 기존의 제조공정으로는 불가능했던 복잡한 형상의 제작이 가능한 장점이 있으며, 이러한 장점으로 인해 경량화 구조물이나 부품이 일체화된 제품의 제조에도 사용되고 있다. 본 연구에서는 이러한 특성을 활용하여 제품의 경량화와 통기성 향상을 위한 다공성 박판 구조를 설계하였고, 유한요소해석을 통해 구조물의 굽힘강성을 비교하였다. 또한 다공성 구조물의 강성 저하를 보완하기 위한 보강설계를 수행하였고, 유한요소해석을 통해 보강구조물의 설계에 따른 굽힘강성 변화를 고찰하였으며 반응표면분석을 통해 설계변수의 최적화를 수행하였다.

Path-dependent three-dimensional constitutive laws of reinforced concrete -formulation and experimental verifications-

  • Maekawa, Koichi;Irawan, Paulus;Okamura, Hajime
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.743-754
    • /
    • 1997
  • A three-dimensional constitutive modeling for reinforced concrete is presented for finite element nonlinear analysis of reinforced concrete. The targets of interest to the authors are columns confined by lateral steel hoops, RC thin shells subjected to combined in-plane and out-of-plane actions and massive structures of three-dimensional (3D) extent in shear. The elasto-plastic and continuum fracture law is applied to pre-cracked solid concrete. For post cracking formulation, fixed multi-directional smeared crack model is adopted for RC domains of 3D geometry subjected to monotonic and reversed cyclic actions. The authors propose a new scheme of decomposing stress strain fields into sub-planes on which 2D constitutive laws can be applied. The proposed model for 3D reinforced concrete is experimentally verified in both member and structural levels under cyclic actions.

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF

헬리컬 기어의 최적 설계 프로그램 개발 및 3차원 모델링 (Development of the Optimal Design Program and the 3-D Modeling for the Helical Gear)

  • 곽재섭;정성원
    • 한국산업융합학회 논문집
    • /
    • 제3권2호
    • /
    • pp.107-114
    • /
    • 2000
  • Recently the studies on the vibration and the noise of a helical gear transmission have been focused on the many researchers. The manufacturing error and the deformation of the tooth profile, which generates the vibration and the noise of the gear transmission, are main factors. The major purpose of this study is to develop an optimal design program for reducing the vibration and the noise of the helical gear. To obtain the these results, we restrain the helical gear from the deformation of the tooth profile and increase the contact ratio within the optimal design program. Furthermore we made the three-dimensional solid modeling of the helical gear from the AutoCAD and the Pro/Engineer. This model will be available to generate the finite element model and the NC code.

  • PDF