• 제목/요약/키워드: 3D slope stability

검색결과 95건 처리시간 0.02초

3차원 사면안정해석법의 유효성 평가 (The Evaluation of 3-D Slope Stability Analysis)

  • 최영준;이수헌;황승현;안준상;사토 유지
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.411-418
    • /
    • 2009
  • So far the Limit Equilibrium Method has been widely used by way of 2-D slope stability analysis for the evaluation of land slides and slope failures. However recently the evaluation of 3-D slope stability analysis has been comparatively possible owing to the developments of obtaining the terrain data and geological data and of 3-D slope stability analysis softwares. In Japan the evaluation of the 3-D slope stability analysis has been necessary for the stability analysis of the tunnel mouth. In this study we inspected the economic effects introducing the 3-D slope stability analysis for larger scale landslides and slope failures. In case of 3-D slope stability analysis of landslides we acquired the results that we reduce the cost of the countermeasure work of pile work by 40% comparing the 2-D slope stability analysis. Moreover in case of the stability analysis of slope failures we figured out the results that we reduce the cost of the countermeasure work of anchor works by 20%. Furthermore we proved that 3-D slope stability analysis is effective for the stability analysis of tunnel mouths around the sides of landslides and large scale embankment which we could have not evaluated by conventional 2-D section stability analysis.

  • PDF

3차원 스캐닝을 활용한 사면의 안정성 평가 및 대책공법수립 (Establishment of remedial methods and evaluation of slope stability using 3D scanning)

  • 임은상;김범주;오석훈;임정열;김영경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.711-719
    • /
    • 2006
  • In this study, a 3D laser scanner is applied to evaluate of the stability of rock slope and to establish a adequate counter-method. From 3D scanning results, three dimensional digital data of rock slope is acquired, and then it is investigated for the engineering properties of discontinuities in rock mass. On the base of the result, we carry out the analysis of slope stability using the methods of the stereographic projection. In particular, the use of a 3D laser scanner is powerful about the slope on which person is difficult to approach because we can obtain the informations of discontinuities from the 3D digital data.

  • PDF

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

Three-dimensional stability assessment of slopes with spatially varying undrained shear strength

  • Shi, Yunwei;Luo, Xianqi;Wang, Pingfan
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.375-384
    • /
    • 2022
  • The variation of the undrained shear strength (cu) is an important consideration for assessing slope stability in engineering practice. Previous studies focused on the three-dimensional (3D) stability of slopes in normally consolidated clays generally assume the undrained shear strength increases linearly with depth but does not vary in the horizontal direction. To assess the 3D stability of slopes with spatially varying undrained shear strength, the kinematic approach of limit analysis was adopted to obtain the upper bound solution to the stability number based on a modified failure mechanism. Three types failure mechanism: the toe failure, face failure and below-toe failure were considered. A serious of charts was then presented to illustrate the effect of key parameters on the slope stability and failure geometry. It was found that the stability and failure geometry of slopes are significantly influenced by the gradient of cu in the depth direction. The influence of cu profile inclination on the slope stability was found to be pronounced when the increasing gradient of cu in the depth direction is large. Slopes with larger width-to-height ratio B/H are more sensitive to the variation of cu profile inclination.

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang;Meijuan Xu;Wei Hu;Zehang Qian;Qiujing Pan
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.639-652
    • /
    • 2023
  • Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.

강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토 (Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure)

  • 정자혜;김우석
    • 지질공학
    • /
    • 제27권3호
    • /
    • pp.267-274
    • /
    • 2017
  • 암반은 암석재료 자체의 역학적 성질과 암반내에 분포하는 불연속면의 기하학적 특징에 의해 그 역학적 특성이 좌우된다. 암반사면의 경우에는 불연속면에 의해 특히 파괴면의 위치와 파괴후의 거동 등이 달라진다. 본 논문에서는 불연속면의 규모에 따라 암반사면의 파괴형태가 달라지는 점을 고려하여, 원호파괴와 평면파괴 안정해석을 위한 2개의 3D 해석방법을 개발하고 실제 사면에 적용하여 그 적용성을 검토하였다. 결과, 원호파괴의 경우, 자연건조상태에서는 안정하지만 강우에 의해 표층 함수비가 증가하면 불안정해지는 해석 결과를 얻었다. 평면파괴의 경우도 강우에 의해 불연속면 자체의 마찰각이 감소하는 영향에 의해 건조상태보다 불안정해지는 결과가 나타났다. 이상의 해석 결과로부터 실제 사면에서의 현상을 잘 반영하는 것으로 보아, 개발된 해석방법이 사면안정성 검토 또는 유지관리의 목적으로 적용가능하다고 판단된다.

Investigation of slope reinforcement with drilled shafts in colluvium soils

  • Lia, An-Jui;Wang, Wei-Chien;Lin, Horn-Da
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.71-86
    • /
    • 2022
  • In Taiwan, an efficient approach for enhancing the stability of colluvium slopes is the drilled shaft method. For slopes with drilled shafts, the soil arching effect is one of the primary factors influencing slope stability and intertwines to the failure mechanism of the pile-soil system. In this study, the contribution of soil arching effect to slope stability is evaluated using the FEM software (Plaxis 3D) with the built-in strength reduction technique. The result indicates the depth of the failure surface is influenced by the S/D ratio (the distance to the diameter of piles), which can reflect the contribution of the soil arching effect to soil stability. When α (rock inclination angles)=β (slope angles) is considered and the S/D ratio=4, the failure surface of the slope is not significantly influenced by the piles. Overall, the soil arching effect is more significant on α=β, especially for the steep slopes. Additionally, the soil arching effect has been included in the proposed stability charts. The proposed charts were validated through two case studies, including that of the well-known Woo-Wan-Chai field in Taiwan. The differences in safety factor (FoS) values between the referenced literature and this study was approximately 4.9%.

3차원 사면안정해석을 이용한 활동지괴 가장자리부의 전단저항에 관한 연구 (A Study on Shear Resistance Effect along Marginal Region of Sliding Mass using 3D Slope Stability Analysis)

  • 서용석;태전영장;채병곤;윤운상
    • 지질공학
    • /
    • 제14권4호
    • /
    • pp.451-460
    • /
    • 2004
  • 사면안정해석에 일반적으로 이용되는 2차원 한계평형해석에서는 활동면의 강도를 활동면 전체에 동일하게 설정한다. 그러나 사면의 활동면에서 저면부와 가장자리부의 강도는 다른 경우가 대부분이다. 4가지 절취모델을 이용한 3차원 사면안정해석의 결과에 따르면 활동면내에서 가장자리부의 저항력이 사면의 안정성에 크게 영향을 미치는 것으로 나타났다. 3차원 사면안정해석에서 활동면 강도를 저면부와 가장자리부로 구분하여 설정함으로써 지금까지 고려하지 못했던 사면 가장자리부의 전단강도가 사면안정에 미치는 영향을 정량적으로 파악할 수 있었다. 활동 저면부의 저항력이 낮은 경우에는 사면의 측부 절토에 의하여 안전율이 크게 저하되며, 저항력이 높은 경우에는 말단부 절토에 의하여 안전율이 저하되고 두부 절토에 의하여 안전율이 향상된다.

터널 갱구지역 사면안정성 및 산사태 위험도 평가 (Slope stability analysis and landslide hazard assessment in tunnel portal area)

  • 정해근;서용석
    • 한국터널지하공간학회 논문집
    • /
    • 제15권4호
    • /
    • pp.387-400
    • /
    • 2013
  • 본 연구에서는 터널 갱구사면을 대상으로 사면안정성 및 산사태 위험도를 평가하였다. 먼저 사면안정성 해석을 통해 붕괴위험도가 가장 높은 구간을 선정하고 구체적인 붕괴규모를 파악하였다. 해석결과 해발고도 485~495 m인 구간은 강우시 안전율이 0.99로 불안정한 상태로 나타났다. 이 때 붕괴심도는 최대 2.1 m이며 붕괴 길이는 사면의 경사방향으로 18.6 m로 분석되었다. 해당구간에서 사면붕괴 시 파생되는 사태물질의 이동특성을 실시간으로 분석하고 터널 갱구부에 미치는 영향을 파악하고자 산사태 시뮬레이션 해석을 수행하였다. 해석결과 사태물질은 7.74 m/sec의 평균속도를 보이며 주로 계곡부를 따라 산 하부로 이동하는 것으로 분석되었다. 사태물질은 산 하부로 갈수록 점차 확산되며 10초 후에 터널 갱구부 위를 지나고 20.2초 후에 산하부에 도달하는 것으로 분석되었다. 특히 터널 갱구부는 사태물질 이동경로의 중심부에 위치하고 있어 산사태 발생 시 직접적인 피해를 받는 것으로 나타났다.