• 제목/요약/키워드: 3D ship object

검색결과 17건 처리시간 0.021초

객체 지향 초기 선체 구조 설계 시스템 개발 (Development of an Object-Oriented Initial Hull Structural Design System)

  • 노명일;이규열
    • 한국CDE학회논문집
    • /
    • 제10권4호
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

HMD를 사용한 가상현실 선박 시뮬레이터 시스템의 프로토타입 개발 (Development of Prototype VR Ship Simulator System Using HMD)

  • 임정빈;공길영;구자영
    • 한국항해학회지
    • /
    • 제24권3호
    • /
    • pp.133-140
    • /
    • 2000
  • The paper deals with the implementation of prototype Ship Simulator system (VRSS) by Virtual Reality techniques with Head Mounted Display (HMD) device. The prototype VRSS was consists of PC-based human sensors, object oriented operating system. In addition, two kinds of databases arranged from Head Related Transfer Functions and 3D object models were used to create 3D sea sound, and to construct virtual world, respectively. Using the prototype system, we carried out some simulation tests for the overtaking situation to prevent collisions at sea, and discussed on the usability of the system. As results from simulations, the prototype VRSS can provide multisensory and interactive display environment. The results gave rise to the user interaction with 3D objects that give realistic reproduction of navigational environments under a given scenario. Thus, we found that the prototype VRSS should be one of the next-generation ship simulation system.

  • PDF

가상현실 선박 시뮬레이터의 배경 구현 (Implementation of Background Scene in the Virtual Reality Ship Simulator)

  • 임정빈
    • 해양환경안전학회지
    • /
    • 제6권1호
    • /
    • pp.11-22
    • /
    • 2000
  • The paper describes creation methods of background scenes to implement realistic virtual environments in the VRSS (Virtual Reality Ship Simulator). VRSS is next-generation system constructed with virtual tools in a virtual space. Thus, it could have many benefits compared to conventional ship simulators composed with heavy bridge mock-up system and wide visual presentations. In this work, we developed effective 3D object modeling techniques, and constructed virtual harbor scene by using 3D-Webmaster authoring tool. The virtual harbor was built with object-oriented 3D objects modeled to interact with user's action. With the immersion-type VR system, we created virtual harbor environments in a virtual space, and discussed on the naturalness of the scene with test results of SDMPA (Semantic Differential Method for Psychophysical Assessment) by 10 subjects. As the results of subject assessment, all of the participants could felt natural-like harbor. Therefore, we found that the proposed creation methods and procedures of background scene are enabling to fit to the full mission VRSS construction.

  • PDF

PC 기반 가상현실 선박조종 시뮬레이터 (PC Based Virtual Reality Ship Handling Simulator)

  • 이규동;임정빈;정중식;박성현;김창경;심영호;최기영
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 추계학술발표회
    • /
    • pp.53-57
    • /
    • 2003
  • 이 연구의 최종 목적은 PC를 이용하여 저가이면서 작동이 용이한 가상현실기반 선박조종 시뮬레이터를 개발하는데 있다. 이 논문에서는 가상 항해공간에 구축한 3차원 선박 객체를 선박조종계수로 제어하는 절차와 방법을 기술했다. 가상 항해세계 창출, 선박조종의 수학적 배경, 시스템 구성 둥에 대해서도 검토하였다.

  • PDF

강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool (Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection)

  • 전명환;이영준;신영식;장혜수;여태경;김아영
    • 로봇학회논문지
    • /
    • 제14권2호
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.

FLOW-$3D^{(R)}$를 이용한 항주파 수치모의 (Numerical Simulation of Ship-induced Wave Using FLOW-$3D^{(R)}$)

  • 강영승;김평중;현상권;성하근
    • 한국해안·해양공학회논문집
    • /
    • 제20권3호
    • /
    • pp.255-267
    • /
    • 2008
  • 대표적인 상용 CFD 코드 중 하나인 FLOW-$3D^{(R)}$에 포함된 강체에 대한 6-자유도 운동을 적용한 음해법의 GMO 방법을 이용하여 항주파의 재현 가능성을 살펴보았다. 모델에 의한 항주파의 형상 재현시 depth Froude number에 따른 수평 파형이 잘 재현되었으며, 선박의 직선항로 항행시 일정한 수심인 경우와 실제 수심인 경우를 비교함으로써 모델이 수심에 따른 파형의 변화를 잘 재현함을 알 수 있었다. 또한, 모델에 의해 실제 수심조건에서 두 척의 선박이 교차 진행할 경우와 선박이 곡선항로를 항행할 경우에 대한 항주파를 잘 재현할 수 있음을 보였다. 따라서, FLOW-$3D^{(R)}$를 이용하여 항주파를 수치모의할 경우 관측을 통한 모델의 검 보정을 통해 항로와 항구에서의 항주파를 보다 정확하게 예측할 수 있을 것으로 판단된다.

VIRTUAL REALITY SHIP SIMULATOR

  • Yim, Jeong-Bin
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 Proceeding of CIN-KIN Joint Symposium 2000 on M.E.T. Under STCW 78/95 and SINO-KOREA MARITIME CONTACT IN MID-CENTURIES
    • /
    • pp.93-105
    • /
    • 2000
  • This paper describes prototype Virtual Reality Ship Simulator (VRSS) that we have recently developed next-generation training equipment based on the virtual reality (VR) technology. The inherent defects of conventional ship simulators are enormous costs and difficult system upgrade due to the system construction, such as large mock-up bridge system, wide visual presentations, In this paper, to cope with those problems, we explored VR technology that can give realistic environments in a virtual world. Then we constructed prototype VRSS system, which is, consists of PC-based human sensors, and Databases set having 3D object models and coefficients of Head Related Transfer Functions (HRTFs). 3D-WEBMASTER authoring tool was used as Virtual Reality Modeling Language (VRML). Using the VRSS system, we constructed Port an Passage Simulator for the harbor of INCHON in Korea, and Ship and Sea State Simulator for an arbitrary given sea environmental states by user. Through many simulation tests, we testified the efficiency of developed prototype VRSS by subject assessment with five participants. Then, we present results on the simulation experiments and conclude with discussion of evaluation results.

  • PDF

객체지향 선체모델링과 구조해석모델 자동생성에의 응용 (Object-Oriented Ship Structural Modeling and its Application to the Automatic Generation of Structural Analysis Model)

  • 염재선;장창두
    • 대한조선학회논문집
    • /
    • 제33권4호
    • /
    • pp.66-74
    • /
    • 1996
  • 기존의 CAD/CAM 시스템들은 대부분이 완성된 제품의 최종 상태만을 표현하기 위한 수단으로 사용되고 있다. 하지만 선박과 같이 규모가 큰 제품을 생산하기까지는 설계 및 생산 과정에서 많은 시간과 노력이 요구되며, 수많은 정보가 생성되고 교환되어야 한다. 그러므로 이와 같은 문제점들을 극복하기 위하여 제품의 최종 상태뿐 만 아니라 설계 및 생산 과정에서 사용되는 정보를 표현할 수 있는 모델이 필요하다. 따라서 본 연구에서는 그러한 정보의 중심이 될 수 있고, 선박의 초기설계 과정에서 생성되는 구조설계 정보를 바탕으로 선체를 구성하는 부재들의 3차원 형상정보와 위상정보를 포함하는 선체모델을 구축하고, 판골(板骨)구조인 선박에 대해 판부재뿐 아니라 종늑골(logitudinal)과 방요재(stiffener)까지 고려하였으며, 선체모델을 통한 한가지 응용 예로써, 선체모델로부터 구조해석모델을 자동 생성하는 방법에 대한 연구를 수행하였다.

  • PDF

딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리 (Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning)

  • 이동건;지승환;박본영
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

선박용 배관의 Auto-Routing을 위한 설계 전문가 시스템 (Pipe Atuo-Routing with Design Knowledge-base)

  • 강상섭;명세현;한순흥
    • 한국CDE학회논문집
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 1997
  • Finding the optimum route of ship's pipes is complicated and time-consuming process. Experience of designers is the main tool in this process. To reduce design man-hours and human errors a design expert system shell and a geometric modeler is used to automate the design process. In this paper, a framework of the intelligent CAD system for pipe auto-routing is suggested, which consists of general-purpose expert system shell and a geometric modeler. The design expert system and the geometric modeling kernel have been integrated. The CADDS5 of Computervision is used as the overall CAD environment. The Nexpert Object of Neuron Data is used as the expert system shell. The CADDS5 ISSM is used as the interface that creates and modifies geometric models of pipes. Existing algorithms for the routing problem have been analyzed. Most of them are to solve the 2-D circuit routing problems. Ship piping system, specially within the engine room, is a complicated, large scale 3-D routing problem. Methods of expert system have been used to find the route of ship pipes on the main deck.

  • PDF