• Title/Summary/Keyword: 3D self-assembly

Search Result 44, Processing Time 0.025 seconds

Three-Dimensional Self-Assembly of Gold Nanoparticles Using a Virus Scaffold

  • Kang, Aeyeon;Lee, Young-Mi;Kang, Hyo Jin;Chung, Sang Jeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.651-651
    • /
    • 2013
  • Templated strategy is a very powerful tool for creating multi-dimensional self assembly of nanomaterials. Since viral protein cages have a uniform size with a well-defined structure, they can serve as an excellent template for the formation of a three-dimensional self-assembly of synthetic nanoparticles. In this study, we have examined the feasibility of the 3D self-assembly of gold nanoparticles of various sizes using a brome mosaic virus (BMV) capsid with cysteine groups expressed on its surface as a scaffold for the assembly. It was found that the three-dimensional clusters of gold nanoparticles with a designed structure were attainable by this approach, which was verified by transmission electron microscope (TEM) and dynamic light scattering (DLS) analysis.

  • PDF

Supramolecular Assembly toward Organic Nanostructures

  • Lee, Myong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.173-173
    • /
    • 2006
  • We have explored a strategy to control the supramolecular nano-structures self-assembled from rigid segments through attachment of flexible chains through microphase separation and anisotropic arrangement. Supramolecular structures formed by self-assembly of rigid building blocks can be precisely controlled from 1-D layered, 3-D bicontinuous cubic to 2-D cylindrical structures by systematic variation of the type and relative length of the respective blocks. Furthermore, depending on the individual molecular architectures, rigid building blocks self-assemble into a wide range of supramolecular structures such as honeycomb, disk, cylinder, helix, tube, barrel stave, and nano-cage.

  • PDF

Self-assembly of Dumbbell-shaped Rod Amphiphiles Based on Dodeca-p-phenylene

  • Huang, Zhegang;Liu, Libin;Lee, Eun-Ji;Lee, Myong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1485-1490
    • /
    • 2008
  • Dumbbell-shaped aromatic amphiphilic molecules consisting of a dodeca-p-phenylene as a rigid segment and oligoether dendrons as a flexible chains were synthesized, characterized, and their aggregation behavior was investigated in the bulk and at the air-water interface. In contrast to the molecule 2 which shows a nematic liquid crystalline state, molecule 1 based on shorter dendritic chains was observed to self-assemble into a 3-D primitive orthorhombic supercrystal. And molecule 1 at the air-water interface was observed to reorganize from circular plates to ring structures by lateral compressions.

Phage Assembly Using APTES-Conjugation of Major Coat p8 Protein for Possible Scaffolds

  • Kim, Young Jun;Korkmaz, Nuriye;Nam, Chang Hoon
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.9.1-9.7
    • /
    • 2012
  • Filamentous phages have been in the limelight as a new type of nanomaterial. In this study, genetically and chemically modified fd phage was used to generate a biomimetic phage self-assembly product. Positively charged fd phage (p8-SSG) was engineered by conjugating 3-aminopropyltriethoxysilane (APTES) to hydroxyl groups of two serine amino acid residues introduced at the N-terminus of major coat protein, p8. In particular, formation of a phage network was controlled by changing mixed ratios between wild type fd phage and APTES conjugated fd-SSG phage. Assembled phages showed unique bundle and network like structures. The bacteriophage based self-assembly approach illustrated in this study might contribute to the design of three dimensional microporous structures. In this work, we demonstrated that the positively charged APTES conjugated fd-SSG phages can assemble into microstructures when they are exposed to negatively charged wild-type fd phages through electrostatic interaction. In summary, since we can control the phage self-assembly process in order to obtain bundle or network like structures and since they can be functionalized by means of chemical or genetic modifications, bacteriophages are good candidates for use as bio-compatible scaffolds. Such new type of phage-based artificial 3D architectures can be applied in tuning of cellular structures and functions for tissue engineering studies.

Development of the Nanofluidic Filter and Nanopore Micromixer Using Self-Assembly of Nano-Spheres and Surface Tension (나노구체의 자기조립 성질과 표면장력을 이용한 나노유체필터 및 나노포어 마이크로믹서)

  • Seo, Young-Ho;Choi, Doo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.910-914
    • /
    • 2007
  • We present a simple and an inexpensive method for the fabrication of a nano-fluidic filter and a nano-pore micromixer using self-assembly of nano-spheres and surface tension. Colloid-plug was formed by surface tension of liquid in a microchannel to fabricate nanofluidic filter. When colloid is evaporated, nano-spheres in a colloid are orderly stacked by a capillary force. Orderly stacked nano-spheres form 3-D nano-mesh which can be used as a mesh structure of a fluidic filter. We used silica nano-sphere whose diameter is $567{\pm}85nm$, and silicon micro-channel of $50{\mu}m$-diameter. Fabricated nano-fluidic filter in a micro-channel has median pore diameter of 158nm which was in agreement with expected diameter of the nano-pore of $128{\pm}19nm$. A nano-pore micromixer consists of $200\;{\mu}m-wide,\;100\;{\mu}m-deep$ micro-channel and self-assembled nano-spheres. In the nano-pore micromixer, two different fluids had no sooner met together than two fluids begin to mix at wide region. From the experimental study, we completely apply self-assembly of nano-spheres to nano-fluidic devices.

Self-assembly directed synthesis of tubular conducting polymer inside the channels of MCM-41

  • Showkat, Ali Md.;Lee, Kwang-Pill;Gopalan, Anantha Iyengar;Reddy, K. Raghava;Kim, Sang-Ho;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.211-217
    • /
    • 2006
  • Diphenyl amine (DPA) was polymerized inside the channels of the mesoporous silica (MCM-41). MCM-41 (C) and MCM-41 (D) were prepared with cetyltrimethyl ammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), respectively and used as hosts. Initially, the self assembly of DPA inside the pores of MCM-41 was made in ${\beta}$-naphthalene sulfonic acid (NSA) medium and subsequently poly (diphenylamine), PDPA was formed by oxidative polymerization. $N_2$ adsorption-desorption measurements of PDPA loaded MCM-41 (C) and MCM-41 (D) show variations in pore volume and surface area between them. A tubular form of poly (diphenylamine), PDPA was envisaged to form in the pores of MCM-41 and supported by high resolution transmission microscopy. The presence of PDPA inside the channel of MCM-41 was further confirmed by FTIR spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction.

A 3-D Position Compensation Method of Industrial Robot Using Block Interpolation (블록 보간법을 이용한 산업용 로봇의 3차원 위치 보정기법)

  • Ryu, Hang-Ki;Woo, Kyung-Hang;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.235-241
    • /
    • 2007
  • This paper proposes a self-calibration method of robots those are used in industrial assembly lines. The proposed method is a position compensation using laser sensor and vision camera. Because the laser sensor is cross type laser sensor which can scan a horizontal and vertical line, it is efficient way to detect a feature of vehicle and winding shape of vehicle's body. For position compensation of 3-Dimensional axis, we applied block interpolation method. For selecting feature point, pattern matching method is used and 3-D position is selected by Euclidean distance mapping between 462 feature values and evaluated feature point. In order to evaluate the proposed algorithm, experiments are performed in real industrial vehicle assembly line. In results, robot's working point can be displayed 3-D points. These points are used to diagnosis error of position and reselecting working point.

Packing Density Parameters of Palladium Nanoparticle Monolayers Fabricated via Spin-Coating Electrostatic Self-Assembly

  • An, Minshi;Hong, Jong-Dal;Cho, Kyung-Sang;Lee, Eun-Sung;Choi, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.623-626
    • /
    • 2008
  • Spin-coating electrostatic self-assembly (SCESA) is utilized to fabricate a single layer of carboxylic-acid-coated Pd nanoparticles (NPs) (D??5 nm) on an oppositely charged surface. The packing density of a NP monolayer formed on a rotating solid substrate (3000 rpm) was examined with regards to various parameters, including the particle concentration, the pH, and the ionic strength of the solution. Initially, the packing density grew exponentially with increases in the particle concentration, up to a maximum value (of 8.4 ´ 1011/cm2) at 1.2 wt%. The packing density was also found to increase drastically as the pH decreased and the ionic strength of the solution increased; these trends can be attributed to a reduction in the interparticle repulsions among the NPs in the solution and on the substrate. The best result of this study was achieved in a 1.2 wt% solution at pH 8; under these conditions, an NP monolayer with the highest density (namely, 1.6 ´ 1012/cm2) was obtained.

Fabrication and Manipulation of Gold 1D Chain Assemblies Using Magnetically Controllable Gold Nanoparticles

  • Kim, Lily Nari;Kim, Eun-Geun;Kim, Junhoi;Choi, Sung-Eun;Park, Wook;Kwon, Sunghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3735-3739
    • /
    • 2012
  • We have developed magnetically controllable gold nanoparticles by synthesizing superparamagnetic $Fe_3O_4$ core/gold shell nanoparticles. The core/shell particles have the capability of forming gold 1D chains in the presence of an external magnetic field. Here we demonstrate dynamic and reversible self-assembly of the gold 1D chain structures in an aqueous solution without any templates or physical or chemical attachment. The spatial configuration of gold chains can be arbitrarily manipulated by controlling the direction of a magnetic field. This technique can provide arbitrary manipulation of gold 1D chains for fabrication purpose. To demonstrate this capability, we present a technique for immobilization of the gold particle chains on a glass substrate.

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.