• Title/Summary/Keyword: 3D scanning technology

Search Result 519, Processing Time 0.029 seconds

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

Development of a displacement measurement system for architectural structures using artificial intelligence techniques (인공지능 기법을 활용한 건축 구조물 변위측정시스템 개발)

  • Kang, Ye-Jin;Kim, Dae-Geon;Woo, Jong-Yeol;Lee, Dong-Oun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.135-136
    • /
    • 2022
  • As a recent technology, it is possible to partially grasp the occurrence of displacement of the entire building through artificial intelligence technology for big data through scanning. However, scanning and data processing take a lot of time, so there is a limit to constant monitoring, so constant monitoring technology of building behavior that combines wireless remote sensors and 3D shape scanning is required. Therefore, in this study, artificial intelligence program coding technology is linked. In addition, a technology capable of real-time wireless remote measurement of structure displacement will be developed through technology development in response to safety management that combines existing building technologies such as sensors. Through this, it is possible to establish an integrated management system for safety inspection and diagnosis.

  • PDF

A Study on the 3D Digital Restoration Technology Using a Shard of a Joseon Dynasty White Porcelain Water Dropper (조선시대 백자 연적 편(片)을 활용한 3차원 디지털 복원 기술 연구)

  • Shin, Woocheol;Kim, Kyungjoong;Wi, Koangchul
    • Conservation Science in Museum
    • /
    • v.22
    • /
    • pp.85-96
    • /
    • 2019
  • The restoration of ceramics excavated in fragments is limited by the difficulty of inferring the overall shape of the original object. However, recent innovations in digital technology can help to overcome the limits of conventional restoration using handwork. This study explored the potential of digital technology by digitally restoring a shard from a white porcelain water dropper excavated at a kiln site at Sindae-ri. In order to complete the digital restoration, 3D scanning was applied to obtain scan data, and 3D modeling and texture mapping were performed. In this way, three-dimensional data with patterns and color information was acquired and the original form of the water dropper could be ascertained based on the shard. The study found that the data acquired from digital restoration can be used for various purposes, including for obtaining data on cross-sections or missing portions of a relic.

Free-standing graphene intercalated nanosheets on Si(111)

  • Pham, Trung T.;Sporken, Robert
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.297-308
    • /
    • 2017
  • By using electron beam evaporation under appropriate conditions, we obtained graphene intercalated sheets on Si(111) with an average crystallite size less than 11nm. The formation of such nanocrystalline graphene was found as a time-dependent function of carbon deposition at a substrate temperature of $1000^{\circ}C$. The structural and electronic properties as well as the surface morphology of such produced materials have been confirmed by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scanning tunneling microscopy.

Technical Design of Tight Upper Sportswear based on 3D Scanning Technology and Stretch Property of Knitted Fabric (3차원 스캔 기술과 니트 소재의 신축성을 적용한 밀착형 스포츠웨어 상의 설계)

  • Kim, Tae-Gyou;Park, Soon-Jee;Park, Jung-Whan;Suh, Chu-Yeon;Choi, Sin-Ae
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.277-285
    • /
    • 2012
  • This research studied how to develop tight upper sportswear from 3D scan data considering fabric stretch property. Subjects were five Korean men of average figure in their 20's. Scanning was done for ten postures via vitus smart/pro(Techmath LTD). Analyzing from 3D scan data, more than 70% of the upper body surface showed surface change rate under 20%. It was shoulder and under arm side part that showed most noticeable body surface change when moving. A parametric model with convex surface was generated and flattened onto the plane, resulting 2D pattern. The error rate occurring in the process of 3D to 2D conversion was 0.2% for outline and 0.13% for area, respectively. Thirteen kinds of stretchable fabrics in the market were collected for this study. Stretch property was in the range of 16.0~58.2% for wale direction; 23.1~78.4% for course. Based on wear trial test, four fabrics were chosen for making the 1st experimental garment and finally one fabric was chosen for the 2nd one, which was developed applying 4 kinds of crosswise reduction rate on 2D pattern: 0, 5, 10, and 15%. Through wear trial test and garment pressure measurement, experimental garment applied with 10% pattern reduction rate was evaluated as most comfortable and considerable.

A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction

  • Anh, Ji-won;Park, Ji-Man;Chun, Youn-Sic;Kim, Miae;Kim, Minji
    • The korean journal of orthodontics
    • /
    • v.46 no.1
    • /
    • pp.3-12
    • /
    • 2016
  • Objective: The purpose of this study was to compare the precision of three-dimensional (3D) images acquired using iTero$^{(R)}$(Align Technology Inc., San Jose, CA, USA) and Trios$^{(R)}$(3Shape Dental Systems, Copenhagen, Denmark) digital intraoral scanners, and to evaluate the effects of the severity of tooth irregularities and scanning sequence on precision. Methods: Dental arch models were fabricated with differing degrees of tooth irregularity and divided into 2 groups based on scanning sequence. To assess their precision, images were superimposed and an optimized superimposition algorithm was employed to measure any 3D deviation. The t-test, paired t-test, and one-way ANOVA were performed (p < 0.05) for statistical analysis. Results: The iTero$^{(R)}$ and Trios$^{(R)}$ systems showed no statistically significant difference in precision among models with differing degrees of tooth irregularity. However, there were statistically significant differences in the precision of the 2 scanners when the starting points of scanning were different. The iTero$^{(R)}$ scanner (mean deviation, $29.84{\pm}12.08{\mu}m$) proved to be less precise than the Trios$^{(R)}$ scanner ($22.17{\pm}4.47{\mu}m$). Conclusions: The precision of 3D images differed according to the degree of tooth irregularity, scanning sequence, and scanner type. However, from a clinical standpoint, both scanners were highly accurate regardless of the degree of tooth irregularity.

Trends in High-Resolution 3D Data Generation Technologies (고해상도 3D 데이터 생성 기술 분석 및 연구 동향)

  • Kim, H.J.;Choi, J.Y.;Oh, A.R.;Jee, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.3
    • /
    • pp.64-73
    • /
    • 2022
  • As the COVID-19 pandemic has decreased face-to-face communication in everyday life, our interest in cultural communication via virtual world has grown significantly. In particular, the demand for applications that use three-dimensional (3D) data generation technology such as virtual reality, augmented reality, virtual performances, and realistic content is rapidly increasing in the entertainment and gaming industries. Additionally, improved computing capacity has increased the demand for high-resolution data. This study investigates the trends in 3D scanning and photogrammetry technologies that can support high-quality 3D data generation and introduces the high-resolution 3D data generation technology developed and reported in ETRI.

Three Dimensional Confocal Imaging and Biomedical Image Analysis (3차원 Confocal Imaging과 생체 영상 분석)

  • Lee, Yim-Kul
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.257-261
    • /
    • 1995
  • Confocal laser scanning microscopy (CLSM)는 기존의 coherent or incoherent microscopic imaging 보다 횡축 방향 (lateral direction)으로 고해상도를 가지며, 층과 층 사이를 구분하는 광축 방향 (axial direction)의 optical sectioning에 의해 샘플의 3D 구조를 고해상도로 영상화함으로써 3D 구조 및 생체 기능 분석을 가능하게 해 준다. 본 논문에서는 CLSM에 의한 3D 영상화 원리와 촛점면 부근에서 얻어지는 광세기 분포, 얻어진 2D slice 영상의 시각화 및 응용에 대해 논의된다.

  • PDF

Study on 3D Behavior Monitering for Safety Management of A Dam (댐 시설물의 안전관리를 위한 3차원 거동 모니터링 분석)

  • Im, Eun-Sang;Shin, Dong-Hoon;Kim, Jea-Hong;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.663-666
    • /
    • 2008
  • For a fill dam, when a long time has passed since its completion, it is very hard to judge its safety and to maintain effectively it due to limitation and restriction in data showing safety status. Conventional method based on a specific point data by surface settlement gauge is commonly used to define deformation characteristic of dam. However, point data-based deformation analysis cannot provide deformation data of the entire dam. In this study a state-of-the-art terrestrial laser scanning technology is introduced to analyze the entire deformation of dam. As a result, it is known that 3D scanning technique can also be effectively used in evaluating dam safety and then establishing adequate maintain plan.

  • PDF

R&D Trends Monitoring through Scanning Public R&D Investments: The Case of Information & Communication Technology (ICT) in Meteorology and Climatology

  • Heo, Yoseob;Kim, Hyunwoo;Kim, Jungjoon;Kang, Jongseok
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.3
    • /
    • pp.315-329
    • /
    • 2016
  • Public R&D investment information has diverse implications for researching R&D trends. Also, as it is important for the establishment of R&D policy to grasp the current situation and trends of R&D to improve science and technology level, science and technology information service system, such as NTIS (National Science & Technology Information Service), is operated at a national level in most countries. However, since the data forms provided by current NTIS are raw data, it is necessary to develop the R&D performance indicator or to use additional scientometric methods by analyzing scientific papers or scientific R&D project information for grasping R&D trends or analyzing R&D task results. Thus, this study applied public R&D investment information to investigate and monitor R&D trends in the field of information & communication technology (ICT) of meteorology and climatology by using NTIS data of Korea and NSF (National Science Foundation) data of USA.