• Title/Summary/Keyword: 3D resistivity method

Search Result 122, Processing Time 0.032 seconds

A Study on Electrical Resistivity Geophysical Surveys of the Noen Landfill Site (전기비저항 탐사를 이용한 노은매립장 침출수 분포에 관한 연구)

  • Kim, Jun-Kyoung;Hong, Sang-Pyo;Kim, Kwang-Yul;Cho, Yong-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.5
    • /
    • pp.223-230
    • /
    • 2004
  • The electrical resistivity prospecting method with dipole-dipole array were applied in order to survey 3-D structure characteristics of the Noen landfill site. For the electrical resistivity prospecting, 3 line of measurements were established parallel to the main boundary of the Noen landfill site and additional 2 lines were also established perpendicular to the existing 3 lines for the effective investigation of the landfill site. The results showed that the uppermost layer of the landfill site is believed to be stabilized generally based on the characteristics of electrical resistivity distribution. Lowest layer was partially polluted by the leachate.

Site Investigation of a Reclaimed Saline Land by the Small Loop EM Method (소형루프 전자탐사법에 의한 간척지 지반조사)

  • Kim, Ki-Ju;An, Dong-Kuk;Cho, In-Ky;Kim, Bong-Chan;Kyung, Keu-Ha;Hong, Jae-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.175-180
    • /
    • 2010
  • The small loop electromagnetic (EM) method is a fast and convenient geophysical tool which can provide resistivity distribution of shallow subsurface. Especially, it can be a useful alternative of resistivity method in a very conductive environment such as a reclaimed saline land. We applied the multi-frequency small loop EM method for the site investigation of reclaimed saline land. We inverted the measured EM data using one dimensional (1D) inversion program and merged to obtain three dimensional (3D) resistivity distribution over the survey area. Finally, comparing he EM results with the drill log and measured soil resistivity sampled at 16 drill holes, we can define the site character such as thickness of landfill, salinity distribution, and etc.

A study on the Correlation Between the Result of Electrical Resistivity Survey and the Rock Mass Classification Values Determined by the Tunnel Face Mapping (전기비저항탐사결과와 터널막장 암반분류의 상관성 검토)

  • Choi, Jai-Hoa;Jo, Churl-Hyun;Ryu, Dong-Woo;Kim, Hoon;Oh, Byung-Sam;Kang, Moon-Gu;Suh, Baek-Soo
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.279-286
    • /
    • 2003
  • Many trials to set up the correlation between the rock mass classification and the earth resistivity have been carried out to design tunnel support type based on the interpreted electrical resistivity acquired by surface electrical survey. But it is hard to find reports on the comparison of the real rock support type determined during the excavation with the electrical resistivity by the inversion of the survey data acquired before the tunneling. In this study, the rock mass classification based on the face mapping data and the resistivity inversion data are investigated to see if it is possible to design reliably the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system and RMR(rock mass rating) are calculated. Since resistivity data has low resolution, Kriging method as a post processing technique which minimizes the estimated variance is used to improve resolution. The result of correlation analysis shows that the 2D electrical resistivity survey is appropriate to see the general trend of the geology in the sense of rock type, though there might be some local area where these two factors do not coincide. But the correlation between the result of 3D survey and the rock mass classification turns out to be very high, and then 3D electrical resistivity survey can make it possible to set up more reliable rock support type.

Electric Field Calculation of Composite Media Dielectric with Different Resistivity by Using Surface Charge Method (저항을 특성이 크게 상이한 다매질 유전체 내부의 전계 계산을 위한 표면 전하법 기법)

  • Min, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.391-393
    • /
    • 1997
  • Two kinds of the calculation technique are Investigated with 3D triangular SCM for the arrangement of the dielectric sphere with different resistivity under a uniform electric field. The calculation error of Method I is small outside the sphere, but considerably high Inside. On the other hand, the accuracy is much Improved even Inside the solid dielectric by Method II, which uses double layers of triangular charges on the dielectric boundary.

  • PDF

Feasibility of 3D Dipole-Dipole Electrical Resistivity Method to a Vein-Type Ore Deposit (국내 맥상광체조사를 위한 3차원 쌍극자-쌍극자 전기비저항 탐사의 적용성 분석)

  • Min, Dong-Joo;Jung, Hyun-Key;Lee, Hyo-Sun;Park, Sam-Gyu;Lee, Ho-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.268-277
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore deposit survey in literature. Geophysical surveys have been applied to the investigation of both metallic and non-metallic ore deposit. For metallic ore-deposit survey, the 2D electrical resistivity method has been popularly used, because metallic mineral deposits are generally more conductive than surrounding media. However, geological structures are 3D rather than 2D structures, which may lead to misinterpretation in 2D inversion section. In this study, 3D effects are examined for several 3D structures such as a width-varying dyke model and a wedge-shaped model. We also investigate the effects of the direction of survey line. Numerical results show that the width-varying dyke model yields some low resistivity zone in the deep part, which is independent of real ore-body location. For the wedge-shaped model, even though the survey line is located apart from the ore body, the 2D inversion section still shows low resistivity zone in the deep part. When the survey line is not perpendicular to the strike of the ore body, the low resistivity zone is slightly broader but shallower than that obtained along the survey line perpendicular to the strike. For the survey lines that have an angle smaller than $45^{\circ}$ with the strike of the ore body, the inversion results are totally distorted. From these results, we conclude that 2-D survey and interpretation can lead to misinterpretation of subsurface structures, which may be linked to economical loss. Eventually, we recommend to apply 3-D rather than 2-D electrical resistivity survey for ore-deposit survey.

4D Inversion of the Resistivity Monitoring Data with Focusing Model Constraint (강조 모델제한을 적용한 전기비저항 모니터링 자료의 4차원 역산)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.139-149
    • /
    • 2018
  • The resistivity monitoring is a practical method to resolve changes in resistivity of underground structures over time. With the advance of sophisticated automatic data acquisition system and rapid data communication technology, resistivity monitoring has been widely applied to understand spatio-temporal changes of subsurface. In this study, a new 4D inversion algorithm is developed, which can effectively emphasize significant changes of underground resistivity with time. To overcome the overly smoothing problem in 4D inversion, the Lagrangian multipliers in the space-domain and time-domain are determined automatically so that the proportion of the model constraints to the misfit roughness remains constant throughout entire inversion process. Furthermore, a focusing model constraint is added to emphasize significant spatio-temporal changes. The performance of the developed algorithm is demonstrated by the numerical experiments using the synthetic data set for a time-lapse model.

Application of 3D magnetotelluric investigation for geothermal exploration - Examples in Japan and Korea

  • Uchida Toshihiro;Song Yoonho;Mitsuhata Yuji;Lee Seong Kon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.390-397
    • /
    • 2003
  • A three-dimensional (3D) inversion technique has been developed for interpretation of magnetotelluric (MT) data. The inversion method is based on the linearized least-squares (Gauss-Newton) method with smoothness regularization. In addition to the underground 3D resistivity distribution, static shifts are also treated as unknown parameters in the inversion. The forward modeling is by the staggered-grid finite difference method. A Bayesian criterion ABle is applied to search the optimum trade-off among the minimization of the data misfit, model roughness and static shifts. The method has been applied to several MT datasets obtained at geothermal fields in Japan and other Asian countries. In this paper, two examples will be discussed: one is the data at the Ogiri geothermal area, southwestern Japan, and the other is at the Pohang low-enthalpy geothermal field, southeastern Korea. The inversion of the Ogiri data has been performed stably, resulting in a good fitting between the observed and computed apparent resistivities and phases. The recovered 3D resistivity structure is generally similar to the two-dimensional (2D) inversion models, although the deeper portion of the 3D model seems to be more realistic than that of the 2D model. The 3D model is also in a good agreement with the geological model of the geothermal reservoirs. 3D interpretation of the Pohang MT data is still preliminary. Although the fitting to the observed data is very good, the preliminary 3D model is not reliable enough because the station coverage is not sufficient for a 3D inversion.

  • PDF

Distribution of Resistivity Zones Near Nari Caldera, Ulleung-do, Korea, Inferred from Modified Dipole Arrays (변형 쌍극자배열법을 적용한 울릉도 나리 칼데라 주변 조면안산암 지역의 비저항분포 특성 분석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Resistivity surveys can identify the distribution of geological units and structures (including fragmented fault zones), the extent of weathered and modified geological strata, and the characteristics of groundwater. This study aims to analyze the underground sedimentary layers and geological structures near the Nari and Albong Basins of Ulleung-do, Korea, focusing on six survey lines to identify the spatial trends in subsurface resistivity. A modified dipole array method (D method) was employed, combining resistivity results obtained by existing dipole array methods (A and C methods). The modified method provides optimal analysis of the cross-section of underground resistivity, and shows a clear boundary between a low-resistivity zone (${\leq}500{\Omega}{\cdot}m$) of sedimentary layers and weak zones, and a high-resistivity zone (${\geq}5,000{\Omega}{\cdot}m$) of volcanic rock (trachyandesite). The estimated average thickness of the sedimentary layers is 50~100 m for the Albong Basin and 100~200 m for the Nari Basin. An anomaly zone, different from the weak zone in the bedrock, is identified as a caldera fault, and the low-resistivity zone extends from the surface down to the lowest survey depths.

Electrical resistivity survey and interpretation considering excavation effects for the detection of loose ground in urban area

  • Seo Young Song;Bitnarae Kim;Ahyun Cho;Juyeon Jeong;Dongkweon Lee;Myung Jin Nam
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.109-119
    • /
    • 2023
  • Ground subsidence in urban areas due to excessive development and degraded underground facilities is a serious problem. Geophysical surveys have been conducted to estimate the distribution and scale of cavities and subsidence. In this study, electrical resistivity tomography (ERT) was performed near an area of road subsidence in an urban area. The subsidence arose due to groundwater leakage that carried soil into a neighboring excavation site. The ERT survey line was located between the main subsidence area and an excavation site. Because ERT data are affected by rapid topographic changes and surrounding structures, the influence of the excavation site on the data was analyzed through field-scale numerical modeling. The effect of an excavation should be considered when interpreting ERT data because it can lead to wrong anomalous results. A method for performing 2D inversion after correcting resistivity data for the effect of the excavation site was proposed. This method was initially tested using a field-scale numerical model that included the excavation site and subsurface anomaly, which was a loosened zone, and was then applied to field data. In addition, ERT data were interpreted using an existing in-house 3D algorithm, which considered the effect of excavation sites. The inversion results demonstrated that conductive anomalies in the loosened zone were greater compared to the inversion that did not consider the effects of excavation.

Effectiveness of the Electrode Arrays for Delineating 2-D Subsurface Structure (2차원 지하구조 규명을 위한 전극배열의 효율성)

  • Yoon, Jong-Ryeol;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.345-355
    • /
    • 1996
  • The effectiveness of various electrode configurations in horizontal mappings and 1-D inversions of vertical sounding data for delineating 2-D structures was studied. Apparent resistivity values of three point, dipole-dipole, Wenner, and Schlumberger mappings were simulated for such structures as vertical dyke, tabular prism, buried vertical fault, ramp and complex structure by finite difference method (FDM) and they were compared with each other. Also 2-D cross sections for three structures obtained by interpolation of 1-D inverted sounding data in terms of three layers were compared for Schlumberger and Wenner arrays. On these cross sections, horizontal and vertical resistivity interfaces of the 2-D structures are revealed relatively clearly. Apparent resistivity curves of Schlumberger mapping show vertical resistivity discontinuities very well. On the whole, Schlumberger array is superior to the other arrays in electric sounding as well as mapping. This study clearly indicates that interpretations of 2-D structures based on 1-D inversion are possible.

  • PDF