• Title/Summary/Keyword: 3D printing dental materials

Search Result 48, Processing Time 0.026 seconds

Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins (CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교)

  • Lee, Dong-Hyung;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.183-195
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the flexural strength of CAD/CAM denture base resins with conventional denture base resins based on their thicknesses. Materials and Methods: For the conventional denture base resins, Lucitone 199® (C-LC) was used. DIOnavi - Denture (P-DO) and DENTCA Denture Base II (P-DC) were taken for the 3D printing denture base resins. For the prepolymerized PMMA resins, Vipi Block Gum (M-VP) and M-IVoBase® CAD (M-IV) were used. The final dimensions of the specimens were 65.0 mm x 12.7 mm x 1.6 mm / 2.0 mm / 2.5 mm. The 3-point bend test was implemented to measure the flexural strength and flexural modulus. Microscopic evaluation of surface of fractured specimen was conducted by using a scanning electron microscope (SEM). After testing the normality of the data, one-way ANOVA was adopted to evaluate the differences among sample groups with a significance level of P = 0.05. The Tukey HSD test was performed for post hoc analysis. Results: Under the same thicknesses, there are significant differences in flexural strength between CAD/CAM denture base resins and conventional denture base resins except for P-DO and C-LC. M-VP showed higher flexural strength than conventional denture base resins, P-DC and M-IV displayed lower flexural strength than conventional denture base resins. Flexural modulus was highest in M-VP, followed by C-LC, P-DO, P-DC, M-IV, significant differences were found between all materials. In the comparison of flexural strength according to thickness, flexural strength of 2.5 mm was significantly higher than that of 1.6 mm in C-LC. Flexural strength of 2.5 mm and 2.0 mm was significantly higher than that of 1.6 mm in P-DC and M-VP. In M-IV, as the thickness increases, significant increase in flexural strength appeared. SEM analysis illustrates different fracture surfaces of the specimens. Conclusion: The flexural strength of different CAD/CAM denture base resins used in this study varied according to the composition and properties of each material. The flexural strength of CAD/CAM denture base resins was higher than the standard suggested by ISO 20795-1:2013 at a thickness of 1.6 mm or more though the thickness decreased. However, for clinical use of dentures with lower thickness, further researches should be done regarding other properties at lower thickness of denture base resins.

Cellular responses to 3D printed dental resins produced using a manufacturer recommended printer versus a third party printer

  • Beatriz Sona Cardoso;Mariana Brito da Cruz;Joana Faria Marques;Joao Carlos Roque;Joao Paulo Martins;Rodrigo Cordeiro Malheiro;Antonio Duarte da Mata
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.126-138
    • /
    • 2024
  • PURPOSE. The aim of this study was to evaluate the influence of different 3D dental resins, using a manufacturer recommended printer and a third-party printer, on cellular responses of human gingival cells. MATERIALS AND METHODS. Three NextDent resins (Denture 3D+, C&B MFH and Crowntec) were used to produce specimens on printers NextDent 5100 (groups ND, NC and NT, respectively) and Phrozen Sonic Mini 4K (groups PD, PC and PT, respectively). Human gingival fibroblasts were cultured and biocompatibility was evaluated on days 1, 3 and 7. IL-6 and IL-8 concentrations were evaluated at 3 days using ELISA. Surface roughness was evaluated by a contact profilometer. SEM and fluorescence micrographs were analyzed at days 1 and 7. Statistical analyses were performed using SPSS and mean differences were tested using ANOVA and post-hoc Tukey tests (P < .05). RESULTS. There was an increase in cellular viability after 7 days in groups PC and PT, when compared to group PD. ND group resulted in higher concentration of IL-6 when compared to PT group. SEM and fluorescence micrographs showed less adhesion and thinner morphology of fibroblasts from group PD. No significant differences were found regarding surface roughness. CONCLUSION. The use of different printers or resins did not seem to influence surface roughness. NextDent 5100 and Phrozen Sonic Mini 4K produced resins with similar cellular responses in human gingival fibroblasts. However, Denture 3D+ resin resulted in significantly lower biocompatibility, when compared to C&B MFH and Crowntec resins. Further testing is required to support its long-term use, required for complete dentures.

A study on the shear bond strength between 3D printed resin and provisional resin after thermal cycling (3D 프린팅 레진과 임시 수복용 레진의 열순환 처리 후 전단결합강도에 관한 연구)

  • Yim, Ji-Hun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.101-110
    • /
    • 2021
  • Purpose: In this study, we intended to study the change in bond strength according to the thermal cycling of provisional resin and 3D printed resin for making provisional restoration. Materials and Methods: Through DLP method, 3D printed resin powder was used to produce 3D printed resin samples. The samples were grouped into eight groups, according to types of provisional resin (PMMA, bis-acryl resin) which is to be bonded on the samples and numbers of thermal cycling (control, 2,000, 3,000, 5,000 cycles). Shear bond strength of the bonded samples was measured on the universal testing machine. Results: As the number of thermal cycling increased, the shear bond strength of PMMA and bis-acryl resin for 3D printed resins decreased except between 3,000 cycles and 5,000 cycles in PMMA groups. In the PMMA group, there were significant differences in shear bond strength between less number than 3,000 cycles (P < 0.05) and no significant differences between more number than 3,000 cycles (P > 0.05). In the bis-acryl resin group, there were significant differences in shear bond strength between control and 2,000 cycles, control and 3,000 cycles, and control and 5,000 cycles (P < 0.05), no significant difference between 2,000 and 3,000 cycles, between 3,000 and 5,000 cycles (P > 0.05). Conclusion: The shear bond strength between 3D printed resin and provisional resin tended to decrease after thermal cycling.

Effect of fabrication method and surface polishing on the surface roughness and microbial adhesion of provisional restoration (임시 수복물의 제작 방식과 표면 연마가 표면 거칠기와 세균 부착에 미치는 영향)

  • Yeon-Ho Jung;Hyun-Jun Kong;Yu-Lee Kim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Purpose: This study aims to investigate the effects of provisional restoration fabrication methods and surface polishing on surface roughness and microbial adhesion through in vitro experiments. Materials and Methods: 120 cylindrical provisional restoration resin blocks (10 × 10 × 2.5 mm) were manufactured according to four fabrication methods, and 30 specimens were assigned to each group. Afterwards, they were divided into non-polishing group, #400 grit SiC polishing group, and #800 grit SiC polishing group and polished to a 10 × 10 × 2 mm specimen size (n = 10). The surface roughness Ra and Ry of the specimen was measured using a Surface Roughness Tester. Three specimens were extracted from each group and were coated with artificial saliva, and then Streptococcus mutans were cultured on the specimens at 37℃ for 4 hours. The cultured specimens were fixed to fixatives and photographed using a scanning electron microscope. For statistical analysis, the two way of ANOVA was performed for surface roughness Ra and Ry, respectively, and the surface roughness was tested post-mortem with a Scheffe test. Results: The fabrication method and the degree of surface polishing of the provisional restorations had a significant effect on both surface roughness Ra and Ry, and had an interaction effect. There was no significant difference in Ra and Ry values in all polishing groups in DLP and LCD groups. Conclusion: The fabrication method and surface polishing of the provisional restoration had a significant effect on surface roughness and showed different adhesion patterns for S. mutans adhesion.

Comparative evaluation of marginal and internal fit of metal copings fabricated by various CAD/CAM methods (다양한 CAD/CAM 방식으로 제작한 금속하부구조물 간의 변연 및 내면 적합도 비교 연구)

  • Jeong, Seung-Jin;Cho, Hye-Won;Jung, Ji-Hye;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.211-218
    • /
    • 2019
  • Purpose: The purpose of the present study was to compare the accuracy of four different metal copings fabricated by CAD/CAM technology and to evaluate clinical effectiveness. Materials and methods: Composite resin tooth of the maxillary central incisor was prepared for a metal ceramic crown and duplicated metal die was fabricated. Then scan the metal die for 12 times to obtain STL files using a confocal microscopy type oral scanner. Metal copings with a thickness of 0.5 mm and a cement space of $50{\mu}m$ were designed on a CAD program. The Co-Cr metal copings were fabricated by the following four methods: Wax pattern milling & Casting (WM), Resin pattern 3D Printing & casting (RP), Milling & Sintering (MS), Selective laser melting (SLM). Silicone replica technique was used to measure marginal and internal discrepancies. The data was statistically analyzed with One-way analysis of variance and appropriate post hoc test (Scheffe test) (${\alpha}=.05$). Results: Mean marginal discrepancy was significantly smaller in the Group WM ($27.66{\pm}9.85{\mu}m$) and Group MS ($28.88{\pm}10.13{\mu}m$) than in the Group RP ($38.09{\pm}11.14{\mu}m$). Mean cervical discrepancy was significantly smaller in the Group MS than in the Group RP. Mean axial discrepancy was significantly smaller in the Group WM and Group MS then in the Group RP and Group SLM. Mean incisal discrepancies was significantly smaller in the Group RP than in all other groups. Conclusion: The marginal and axial discrepancies of the Co-Cr coping fabricated by the Wax pattern milling and Milling/Sintering method were better than those of the other groups. The marginal, cervical and axial fit of Co-Cr copings in all groups are within a clinically acceptable range.

Color stability of three dimensional-printed denture teeth exposed to various colorants (다양한 색소에 대한 3D 프린팅 인공치의 색 안정성)

  • Koh, Eun-Sol;Cha, Hyun-Suk;Kim, Tae-Hyung;Ahn, Jin-Soo;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Purpose: This study evaluated color stability of Dentca 3D-printed denture teeth, in comparison to color stabilities of four conventional types of denture teeth, upon being immersed in various colorants. Materials and methods: Four types of conventional prefabricated denture teeth (Surpass, GC, Artic 6, Heraeus Kulzer, Premium 6, Heraeus Kulzer, Preference, Candulor), 3D-printed denture teeth (Dentca); and Z250 (Filtek Z250, 3M ESPE) were prepared for testing. The samples were immersed in erythrosine 3%, coffee, cola, and distilled water (DW) at 37℃. Color change (ΔE) was measured by spectrophotometer before immersion and at 7, 14, and 21 days after immersion. One-way analysis of variance was performed along with Tukey's honestly significant difference multiple comparisons test (P<.05). Results: No great difference was observed between the color change of Dentca denture teeth and that of conventional denture teeth in most cases (P>.05). The color change of Dentca denture teeth immersed in erythrosine 3% was greater than that of Surpass (ΔE = 0.67 ± 0.25) after 1 week; Artic 6 (ΔE = 1.44 ± 0.38) and Premium 6 (ΔE = 1.69 ± 0.35) after 2 weeks; and Surpass (ΔE = 1.79 ± 0.49), Artic 6 (ΔE = 2.07 ± 0.21), Premium 6 (ΔE = 2.03 ± 0.75), and Preference (ΔE = 2.01 ± 0.75) after 3 weeks (P<.05). Conclusion: A color change was observed in Dentca denture teeth when immersed in some colorants; however, the maximum value of ΔE for Dentca denture teeth was within the clinically acceptable range.

Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method

  • Lee, Suji;Hong, Seoung-Jin;Paek, Janghyun;Pae, Ahran;Kwon, Kung-Rock;Noh, Kwantae
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • PURPOSE. The accuracy of denture bases was compared among injection molding, milling, and rapid prototyping (RP) fabricating method. MATERIALS AND METHODS. The maxillary edentulous master cast was fabricated and round shaped four notches were formed. The cast was duplicated to ten casts and scanned. In the injection molding method, designed denture bases were milled from a wax block and fabricated using SR Ivocap injection system. Denture bases were milled from a pre-polymerized block in the milling method. In the RP method, denture bases were printed and post-cured. The intaglio surface of the base was scanned and surface matching software was used to measure inaccuracy. Measurements were performed between four notches and two points in the mid-palatal suture to evaluate inaccuracy. The palatine rugae resolution was evaluated. One-way analysis of variance was used for statistical analysis at ${\alpha}=.05$. RESULTS. No statistically significant differences in distances among four notches (P>.05). The accuracy of the injection molding method was lower than those of the other methods in two points of the mid-palatal suture significantly (P<.05). The degree of palatine rugae resolution was significantly higher in the injection molding method than that in other methods (P<.05). CONCLUSION. The overall accuracy of the denture base is higher in milling and RP method than the injection molding method. The degree of fine reproducibility is higher in the injection molding method than the milling or RP method.

The accuracy evaluation of digital surgical stents according to supported type (디지털 수술용 가이드의 지지타입에 따른 정확도 평가)

  • Lee, Junyoun;Yoon, Minho;Park, Taeseok;Chun, Inkon;Yun, Kwidug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.1
    • /
    • pp.8-16
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the accuracy of surgical stent according to the supported type. Materials and methods: 5 sets of dental models which have tooth supported edentulous area and tooth-tissue supported edentulous area were made. Dental model were scanned with model scanner, and CBCT was taken. CT data and model scan data were overlapped using In2Guide software, implant were virtually planned in the software. Surgical stents are fabricated by 3D printing. The implant fixture were installed using the surgical stent, CBCT were retaken. CBCT before surgery and after surgery were overlapped, and the differences (angle difference, coronal difference, apical difference) were evaluated using statistical analysis. Results: In the assessment of the accuracy of surgical guides according to arch type, there are no statistically significant differences between maxilla and mandible. In the case of support type, tooth supported stents showed lower angle difference and length difference than tooth-tissue supported stents, which are statistically significant. Conclusion: Arch type does not affect the accuracy of surgical stents. But tooth support stents are more accurate than tooth-tissue support stents in the case of angle and length difference.