• 제목/요약/키워드: 3D printer material

검색결과 140건 처리시간 0.026초

FDM 3D Printer의 층간 충진율에 따른 강도변화 (Strength Variation with Inter-Layer Fill Factor of FDM 3D Printer)

  • 강용구;권현규;신근식
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, FDM-type 3D printer technology has been developed, and efforts have been made to improve the output formability and characteristics further. Through this, 3D printers are used in various fields, and printer technologies are suggested according to usage, such as FDM, SLA, DLP, and SLM. In particular, the FDM method is the most widely used, and the FDM method technology is being developed further. The characteristics of the output are produced by the FDM-type 3D printer, which is determined by various factors, and particularly the perspective of the Inter-Layer Fill Factor, which is the volume ratio of the laminated material that exerts a direct influence. In this study, the Inter-Layer Fill Factor is theoretically obtained by presenting the internal space between each layer according to the laminate thickness as a cross-sectional shape model, and the cross section of the actual laminated sample is compared with the theoretical model through experiments. Then, the equation for the theoretical model is defined, and the strength change according to each condition (tensile strength of material, reduction slope, strength reduction rate, and output strength) is confirmed. In addition, we investigated the influence on the correlation and strength between laminate thickness and the Inter-Layer Fill Factor.

ThermoJet 3D 프린터로 직접 제작한 패턴과 세라믹쉘 주조법을 이용한 기능성 시제품의 쾌속제작 (Rapid Tooling Technology for Producing Functional Prototypes using Ceramic Shell Investment Casting and Patterns Produced Directly from ThermoJet 3D Printer)

  • 김호찬;이석;이석희
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.203-210
    • /
    • 2006
  • This paper focuses on the development of RT technology suitable for manufacturing a small quantity of metal prototype of a precise part from an RP master. Dimensional accuracy and surface roughness are evaluated from Thermojet part of a 3D printer, and effective post-processing method is introduced. Investment casting is done using a prototype built from 3D printer as a wax pattern. Ceramic shell investment casting technique is developed to build a prototype with materials mostly wanted. Also, experimental result shows this research is very useful in manufacturing of a small quantity of functional part or a test part of a specific material.

얀센 메커니즘의 다리 보행 로봇 개발 및 최적화. (Janssen mechanism leg walking robot development and optimization)

  • 김혁;문예철
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.417-423
    • /
    • 2016
  • Develop a leg walking robot mechanisms with Janssen. Development item increases as the moving speed through the weight to set the leg to walk stably. The material is used the metal material was later used to produce a plastic using a 3D printer developed a walking robot with stable and lightweight material.

  • PDF

3D 프린팅 출력 조건에 따른 PLA+와 ABS 재료의 인장강도에 대한 연구 (A Study on Tensile Strength of PLA+ and ABS Materials by 3D Printing Output Conditions)

  • 나두현;김성기
    • 소성∙가공
    • /
    • 제30권6호
    • /
    • pp.284-290
    • /
    • 2021
  • Manufacturing using a 3D printer has recently increased in many fields and the material extrusion method, which is a lamination method, is commonly used. Since it uses a plastic material, the strength of the output of 3D printing is lower than that of steel material. For this reason, research on improving the mechanical properties of the output of 3D printing is continuously being conducted. In this study, tensile strength was compared with changes in the material type (PLA+, ABS) and density (60, 80, and 100%), layer height (0.1, 0.2, and 0.3 mm), layer direction (transverse and lengthwise), and fill pattern (zigzag, honeycomb, and concentric) among 3D printing output conditions. Tensile tests according to 3D printing output conditions were performed using a Universal Testing Machine. The results showed that tensile strength ranged from 21.10 MPa to 43.65 MPa according to the 3D printing output conditions.

적층 제조형 방식의 3D 프린터로 제작한 뇌 팬텀의 유용성 (Usefulness of Brain Phantom Made by Fused Filament Fabrication Type 3D Printer)

  • 이용기;안성민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.453-460
    • /
    • 2020
  • The price of the Brain phantom (Hoffman 3D brain phantom) used in nuclear medicine is quite expensive, it is difficult to be purchased by a medical institution or an educational institution. Therefore, the purpose of present research is to produce a low-price 3D brain phantom and evaluate its usefulness by using a 3D printer capable of producing 3D structures. The New 3D brain phantom consisted of 36 slices 0.7 mm thick and 58 slices 1.5 mm thick. A 0.7 mm thick slice was placed between 1. 5 mm thick slices to produce a composite slice. ROI was set at the gray matter and white matter scanned with CT to measure and compare the HU, in order to verify the similarity between PLA which was used as the material for the New 3D brain phantom and acrylic which was used as the material for Hoffman 3D brain phantom. As a result of measuring the volume of each Phantom, the error rate was 3.2% and there was no difference in the signal intensity in five areas. However, there was a significant difference in the average values of HU which was measured at the gray and white matter to verify the similarity between PLA and acrylic. By reproducing the previous Hoffman 3D brain phantom with a 100 times less cost, I hope this research could contribute to be used as the fundamental data in the areas of 3D printer, nuclear medicine and molecular imaging and to increasing the distribution rate of 3D brain phantom.

3D 프린터를 활용한 전단키 형상 몰드 제작 방법에 관한 연구 (Study on the Shear Key-shaped Mold making Method utilizing 3D Printers)

  • 장종민;장현오;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.5-6
    • /
    • 2016
  • Due to the construction of high-rise and long axis etc, UHPC(Ultra High Performance Concrete) has attracted attention as a material that will replace the existing concrete. In order to improve the structural performance of each member joints, after demolding the concrete, method for surface treatment of the contact surface or by modifying the mold to create a shear key will be applied. In this study, to improve the conventional shear key manufacturing process, utilizing a 3d printer to produce a shear key plate. 3D printers have advantage it is inexpensively manufactured as compared with other production methods. Therefore, this study utilizes a 3D printer, we propose the shear key-shaped mold and plate shear key production measures.

  • PDF

3차원 프린터 응용을 위한 CT/MRI-영상 기반 GUI소프트웨어 개발 (Development of CT/MRI based GUI Software for 3D Printer Application)

  • 정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권5호
    • /
    • pp.451-456
    • /
    • 2018
  • During last a decade, there has been increased demand for 3D-printed medical devices with significant improvement of 3D-Printer (also known as Additive. Manufacturing AM), which depend upon human body features. Especially, demand for personalized medical material is highly growing with being super-aged society. In this study, 3D-reconstructed 3D mesh image from CT/MRI-images is demonstrated to analyse each patients' personalized anatomical features by using in house, then to be able to manufacture its counterpart. Developed software is distributed free of charge, letting various researcher identify biological feature for each areas.

3D 프린터의 출력시간 단축과 재료소모량 감소를 통한 편의성 개선에 관한 연구 (A Study on the Improvement of Convenience through Reduction of Printing Time and Material Consumption of 3D Printer)

  • 김성연;김은찬;김희찬;남재욱;이상우;백수황
    • 한국전자통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.909-916
    • /
    • 2021
  • 3D 프린터는 개인의 창의력을 실제로 구현할 수 있는 장점이 있다. 이 특성을 활용하려는 사람들은 증가하고 있지만 적합한 프린팅 교육의 기회 부족과 잘못된 출력 방법으로 문제 발생의 어려움을 겪는다. 따라서 저하된 출력물 품질이 사용자의 관심을 낮춰 점차 3D 프린터의 활용빈도 수를 감소시키게 된다. 본 연구에서는 3D 프린터의 오작동 해결과 편의성의 개선을 위해 직접 기기를 작동하면서 발생하는 문제를 파악하고 분석했다. 여러 문제점 중 안착 불량, 스트링 현상, 노즐 막힘을 중점으로 해결과 완화 연구를 진행하였다. 또한, 3D 프린터의 기능을 실험을 통해 재료소모량 감소와 출력시간 단축 방법을 고찰했다. 최종적으로 3D 프린팅 중 빈번하게 발생하는 출력문제를 해결해 외관이 온전한 출력물을 얻을 수 있었고 편의성을 개선하였다.

Production and investigation of 3D printer ABS filaments filled with some rare-earth elements for gamma-ray shielding

  • Batuhan Gultekin;Fatih Bulut;Hatice Yildiz;Hakan Us;Hasan Ogul
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4664-4670
    • /
    • 2023
  • Radiation is the main safety issue for almost all nuclear applications, which must be controlled to protect living organisms and the surrounding materials. In this context, radiation shielding materials have been investigated and used in nuclear technologies. The choice of materials depends on the radiation usage area, type, and energy. Polymer materials are preferred in radiation shielding applications due to their superior characteristics such as chemical inertness, resistivity, low weight, flexibility, strength, and low cost. In the presented work, ABS polymer material, which is possibly the most commonly used material in 3D printers, is mixed with Gd2O3 and Er2O3 nanoparticles. ABS filaments containing these rare-earth elements are then produced using a filament extruder. These produced filaments are used in a 3D printer to create shielding samples. Following the production of shielding samples, SEM, EDS, and gamma-ray shielding analyses (including experiments, WinXCOM, GEANT4, and FLUKA) are performed. The results show that 3D printing technology offers significant enhancements in creating homogeneous and well-structured materials that can be effectively used in gamma-ray shielding applications.

3D 프린터 필라멘트 재료를 이용한 뼈와의 비교분석에 관한 기초연구 (A Basic Study on Comparative Analysis with Bone using 3D Printer Filament Material)

  • 권경태;장희민
    • 한국방사선학회논문지
    • /
    • 제16권7호
    • /
    • pp.825-833
    • /
    • 2022
  • 3D 프린팅 기술은 재료공학의 발전과 더불어 출력할 수 있는 재질이 늘어가고 있으며 방사선 분야에 이용될 수 있는 재료들 또한 증가하고 있는 추세이다. 그렇기에 사용되는 재료들의 성분과 밀도에 따라 적용되는 분야가 달라지고 응용이 될 수 있기에 재료들의 성분과 특성 또한 고려해야 한다. 본 연구는 FDM(Fused Deposition Modeling) 방식의 3D 프린터를 이용하여 각 성질이 다른 필라멘트를 10개를 선정하고 진단용 X선 발생장치를 이용하여 신호강도를 측정하고 CT를 통하여 CT number를 측정하여 뼈와 유사한 물질을 찾고자 하였다. 그 결과 뼈와 유사한 신호강도와 CT number가 측정된 Silicon carbide라는 물질을 발견하였고. 추후 연구를 통해 인체의 뼈와 유사한 밀도를 가진 다양한 연구에 기초자료로 제시될 것으로 사료된다.