• Title/Summary/Keyword: 3D pavement

Search Result 104, Processing Time 0.136 seconds

Effects of the Non-linear Stress-Strain Behavior of RAP Concrete on Structural Responses for Rigid Pavement Application (RAP 콘크리트의 비선형 응력-변형률 특성이 강성포장 구조해석에 미치는 영향)

  • Kim, Kukjoo;Chun, Sanghyun;Park, Bongsuk;Tia, Mang
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • PURPOSES : This study is primarily focused on evaluating the effects of the non-linear stress-strain behavior of RAP concrete on structural response characteristics as is applicable to concrete pavement. METHODS : A 3D FE model was developed by incorporating the actual stress-strain behavior of RAP concrete obtained via flexural strength testing as a material property model to evaluate the effects of the non-linear stress-strain behavior to failure on the maximum stresses in the concrete slab and potential performance prediction results. In addition, a typical linear elastic model was employed to analyze the structural responses for comparison purposes. The analytical results from the FE model incorporating the actual stress-strain behavior of RAP concrete were compared to the corresponding results from the linear elastic FE model. RESULTS : The results indicate that the linear elastic model tends to yield higher predicted maximum stresses in the concrete as compared to those obtained via the actual stress-strain model. Consequently, these higher predicted stresses lead to a difference in potential performance of the concrete pavement containing RAP. CONCLUSIONS : Analysis of the concrete pavement containing RAP demonstrated that an appropriate analytical model using the actual stress-strain characteristics should be employed to calculate the structural responses of RAP concrete pavement instead of simply assuming the concrete to be a linear elastic material.

Evaluation for Application of Warm-mix Asphalt Concrete for Rural Road Pavement (농촌 도로 포장용 준고온 아스팔트 콘크리트 적용 평가)

  • Lee, Sungjin;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.41-50
    • /
    • 2021
  • The asphalt pavement industry has introduced the warm-mix asphalt (WMA) as a mean of energy saving and environmentally safe technology, because the WMA mixture can be mixed and compacted at 30℃ lower than conventional hot-mix asphalt (HMA) at 160℃ or higher. The implementation of WMA can be a good option for paving operations for rural road in remote place, not only due to energy saving and environmental issues, but also lower working temperature. Using WMA technology, the cooled-down asphalt mixture can be still compacted to meet the quality requirement in narrow winding rural road in remote places. Therefore, this study is designed to evaluate engineering properties of WMA binders and concretes, which were prepared for rural road pavement. The objective of the study was to evaluate and suggest proper fundamental properties level of the WMA concrete for rural road pavement. The kinematic viscosity test result indicated that the WMA binders used in this study were effective for compaction at lower temperature, i.e., at 115℃, compared to the HMA binder. According to strength property analyses, it was found that the WMA concrete was acceptable for rural road pavement even though it was compacted at 30℃ lower level. Since the deformation strength (SD) of 3.2 MPa was found to satisfy rutting and cracking resistance minimum guidelines, this value was suggested as a minimum SD value for rural road pavement, considering lack of maintenance program for rural area.

Vibration Properties of Concrete Overlays using RS-LMC (초속경 LMC를 이용한 콘크리트 포장의 진동특성)

  • Kim, Min-June;Shin, Geun-Ock;Joo, Nak-Chin;Lee, Gwang-Jo;Jeong, Je-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.571-579
    • /
    • 2016
  • RS-LMC (Rapid Setting Latex Modified Concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because the overlaid pavement could be opened to the traffic after 3 hours of curing. Although the field performance of RS-LMC generally indicates that it has an excellent bonding to the substrate and shows a long term performance, the crack by vibration of vehicles have been happened on the overlay of bridges in technical reports. In this study, experimental research was carried out to evaluate the vibration properties of RS-LMC overlays by using P.S.T (Pavement Shaking Table). Total 12 specimens were tested and the variables are Latex-cement ratio (L/C) and amplitude of vibration. The result shows that the number of cracks and the total length of cracks are reduced as the increase of Latex-cement ratio (L/C) until 15%. And the crack occurs at a very small strain than the proposed values by Walter, D, G and design codes.

Evaluation of Rutting Resistance of Modified Asphalt Concrete by Accelerated Pavement Testing (포장가속시험을 통한 개질아스팔트 혼합물의 소성변형 저항성 평가 연구)

  • Kim, Jun Hyung;Suh, Young Chan;Kwon, Soo Ahn;Cho, Yong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.285-292
    • /
    • 2006
  • The objective of this study is to introduce the development of the first Korean full-scale APT(Accelerated Pavement Tester) and to compare the performances of general dense grade asphalt mixture and modified asphalt mixtures as the first running of the tester. The tests evaluated the rutting resistance for dense grade mixture and three different modified asphalt mixture under three different temperature conditions (25-30, 40, $50^{\circ}C$). The results of the testing were compared with the laboratory test results. Results of the tests indicated that the all the modified asphalt sections showed higher rutting resistance than the dense grade section. Especially, the difference was more noticeable at higher temperature condition. Additionally, $G^*/sin{\delta}$ is found out to be an important factor for permanent deformation prediction whereas the resilient modulus was not.

A Study on Dowel-Bar Behavior of Jointed Concrete Pavement Using 3-D FEM Analysis (3차원 유한요소해석을 이용한 줄눈콘크리트 포장의 다웰바 거동에 대한 연구)

  • Hong, Seong-Jae;Yune, Chan-Young;Lee, Seung-Woo;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • Dowel-bar in the jointed concrete pavement has been designed and constructed by Foreign standard and experience in Korea. Timoshenko solution was evaluated for dowel bar design. However, various assumptions, Timoshenko solution evaluated only single dowel bar. Therefore, This study object is evaluated the guide line dowel size and arrangement that using the 3Dimensional Finite Element Method. Dowel bar behavior, Timoshenko solution and 3D FEM estimated used result. Dowel allowable stress and Friberg bearing stress estimated using result. The effects of Dowel Group Action were analyzed using Timoshenko range and Friberg range and 3D FEM.

  • PDF

Basic Study on the Characteristics of Wooden Sidewalk Pavement Material using Wood Waste Chip (폐목재 칩을 활용한 목질계 보도포장재의 특성에 대한 기초연구)

  • Choi, Jae Jin;Song, Jin Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.413-420
    • /
    • 2011
  • An experiment was conducted to suggest the road pavement material combining wooden chip crushed from little useful roots and branches from logging sites or wood waste from construction sites with urethane resin. For the specimen, the mass ratio of urethane resin to construction wood waste chip/lumber waster chip was set to three different levels of 0.5, 0.75, and 1.0, which was measured, mixed with mixer, and molded; 7 days after, tensile strength test, elasticity test using golf balls and steel balls, permeability coefficient measurement, and flammability test were executed. As the result, the tensile strength of the specimen at the dry state in the air exhibited the range of 0.2-1.1MPa, and there was no change after 7 days of aging. When submerged in water, however, the strength was partially diminished; the diminishing rate was greater for less urethane resin usage, and therefore it appears desirable to set the mass ratio of resin to the wood waste chip over 0.75 to consider the moisture intrusion by precipitation and such. As the result of elasticity test, the GB and SB coefficients of the specimen using wood waste chips and urethane resin were measured to be low at below 20%, exhibiting excellent elasticity as road pavement material. Also, the permeability coefficient was over 0.5mm/sec for specimens of all combinations, exceeding the standard value required after construction for permeable pavement material, and the flammability of wood-type pavement material was evaluated to have no practical issues.

A Study on the Relational Matching Method for Road Pavement Markings in Aerial Images (항공사진에 나타난 도로 노면표식을 위한 관계형 매칭 기법에 관한 연구)

  • Kim, Jin-Gon;Han, Dong-Yup;Yu, Ki-Yun;Kim, Yong-Il
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.25-31
    • /
    • 2004
  • To obtain the 3-D coordinates of the urban roads from aerial images, the accurate matching technique in road areas is required. In this paper, we suggest the relational matching method that is performed by comparison of relationships of road pavement markings after they are extracted from aerial images using geometric properties and spatial relationships of the pavement markings. Relational matching requires not only high level description of features but also the solution for inexact matching problems. In addition, it needs a lot of tests for the reliable final result. In this research, we described features as calculating geometric properties of the pavement markings, suggested the solution for inextact matching problems, and performed tests to decide whether the result is acceptable or not, which use the property that road areas are flat. In order to evaluate the accuracy of matching, we made a visual evaluation and compared the result of this technique with those measured by analytical photogrammetry.

  • PDF

Investigation into Bonding Characteristics of Tack Coat Materials for Asphalt Overlay on Concrete Pavement (콘크리트포장 위 아스팔트 덧씌우기용 택코팅 재료의 접착강도특성 연구)

  • Cho, Mun Jin
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.85-94
    • /
    • 2013
  • PURPOSES: The performance of tack coat, commonly used for layer interface bonding, is affected by application rate and curing time. In this study, bonding strength tests were performed according to the application rate and curing time of asphalt emulsion. Based on finding from this study, optimum application rates and curing times are proposed. METHODS: In order to investigate bonding characteristic of asphalt emulsion, tests were performed on both asphalt concrete pavement and portland concrete pavement. Also, asphalt emulsions were tested at the application rate of 0, 0.2, 0.4, 0.6, and $0.8{\ell}/m^2$ and at the curing time of 0, 0.5, 1, 2, and 24 hours. Pull-off test and shear bonding strength test, which commonly used for bonding strength measurement of asphalt emulsion, were adopted for this study. To assess field performance under different testing condition, asphalt emulsions were applied to in-service pavement. Throughout coefficient of determination analysis between material index properties from asphalt emulsion and mechanical response from bonding strength tests, performance correlativity was analyzed. RESULTS: Test results show that optimum application rate for asphalt overlay on asphalt concrete pavement (AOA) and asphalt overlay on concrete pavement (AOC) was $0.4{\sim}0.5{\ell}/m^2$ and $0.3{\sim}0.5{\ell}/m^2$, respectively. According to the curing time increment, tensile strength and shear strength of AOC were increased to 22~44% and 20~39%, respectively. AOA case also show strength increment in tensile strength (42%) and shear strength (9%). We tested the applicability of tack coat materials at the field sites, and our findings demonstrated that the bonding (for D and E) and rapid curing (for B, C, and D, E) performances were superior than others. Among material index properties, there was a high correlation between penetration ratio and bonding strength test result. CONCLUSIONS : Result show that interlayer bonding strength was affected by asphalt emulsion type, application rate and curing time. AOC required slightly higher application ($0.1{\ell}/m^2$) than AOA. Both AOA and AOC cases show higher strength at longer curing time. Up to 2hours of curing, rapid strength increments were observed, but strength increment ratio was decreased after 2hours of curing. From the observed correlation between penetration ratio and bonding strength, it is expected that penetration ratio can be used as one of important factors affecting bonding strength analysis.

A Study on the Temperature Prediction for Asphalt Pavement Using Field Monitoring Data (현장 계측자료를 이용한 아스팔트 포장체 온도 예측 연구)

  • An, Deok Soon;Park, Hee Mun;Eom, Byung Sik;Kim, Je Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.67-72
    • /
    • 2006
  • Temperature prediction in asphalt pavements is the one of most important factors for estimating the pavement response and predicting the pavement performance in the mechanistic-empirical pavement design. A study on temperature prediction procedure with variation of time and depth in asphalt pavements was conducted using field monitoring data. After selecting the temperature monitoring sections, the temperature sensors have been installed in different depths and the temperature data have been collected in every one hour. The developed pavement temperature prediction model was calibrated using field monitoring temperature data. The predicted temperatures were compared with measured temperatures at different seasons in selected sections. The results showed that the solar absorptivity and emissivity values in the fall is different from the values in other seasons. The predicted temperatures agree well with the measured temperatures at a wide range of temperatures. The temperature differences between each other fall in the range of ${\pm}3^{\circ}C$. It is also found that the regional characteristics did not affect the temperature prediction procedure.

Development of a Model for Predicting Modulus on Asphalt Pavements Using FWD Deflection Basins (FWD 처짐곡선을 이용한 아스팔트 포장구조체의 탄성계수 추정 모형 개발)

  • Park, Seong Wan;Hwang, Jung Joon;Hwang, Kyu Young;Park, Hee Mun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.797-804
    • /
    • 2006
  • A development of regression model for asphalt concrete pavements using Falling Weight Deflectometer deflections is presented in this paper. A backcalculation program based on layered elastic theory was used to generate the synthetic modulus database, which was used to generate 95% confidence intervals of modulus in each layer. Using deflection basins of FWD data used in developing this procedure were collected from Pavement Management System in flexible pavements. Assumptions of back-calculation are that one is 3 layered flexible pavement structure and another is depth to bedrock is finite. It is found that difference of between 95% confidence intervals and modulus ranges of other papers does not exist. So, the data of 95% confidence intervals in each layer was used to develop multiple regression models. Multiple regression equations of each layer were established by SPSS, package of Statics analysis. These models were proved by regression diagnostics, which include case analysis, multi-collinearity analysis, influence diagnostics and analysis of variance. And these models have higher degree of coefficient of determination than 0.75. So this models were applied to predict modulus of domestic asphalt concrete pavement at FWD field test.