• Title/Summary/Keyword: 3D pattern

Search Result 2,621, Processing Time 0.026 seconds

Andongpo Apparel Pattern Design Connected with the 3D Apparel CAD System (3D CAD System에 의한 안동포의류제품 패턴설계)

  • Kim, Hee-Sook
    • Fashion & Textile Research Journal
    • /
    • v.11 no.1
    • /
    • pp.112-120
    • /
    • 2009
  • The purpose of this study is to develop Andongpo apparel pattern design connected with the Apparel CAD system. It includes pattern making, grading, marking program. In this study, it will be able to make apparel pattern quickly and accurately by using Apparel CAD system. The results were as following : Computerization of the pattern making process is expected to provide higher accuracy and efficiency in apparel pattern making for narrow and expensive Andongpo. ESMOD pattern making method was selected as basic pattern. Tailored jacket patterns were developed for Andongpo. Refer to and . The jacket patterns developed is automatically depicted by inputting consumer's body size. Tailored jacket patterns for Andongpo were marked by using marking program in Apparel CAD system. The efficiency of marking appeared of 70% or more in Andongpo jacket patterns. This results is showed it has an effect on narrow and expensive Andongpo. 3tailored jacket patterns will be able to make a simulation by 3D Apparel CAD system. The results of this study is expected to provide higher consumer's satisfaction and internet brand launching. In addition, encouraging majority of the young to participate in using CAD program for Andongpo is regarded as beneficial for the reinforcement of competitiveness of traditional clothing business.

A Study on the Possibility of Pattern Design Using CAD System (With concentration on the change of coat basic pattern) (CAD System을 이용한 패턴디자인설계 활용가능성에 관한 연구(I)-Coat 원형을 중심으로-)

  • 김옥경
    • Journal of the Korean Society of Costume
    • /
    • v.20
    • /
    • pp.49-62
    • /
    • 1993
  • The purpose of this research was to utilize of Pattern Design System(P.D.S) by using AM-300 The conclusion were like these : 1. A coat of basic pattern was selected by design sketch. 2. The basic pattern was input into computer by digitizing. 3. The basic pattern was change into designed shape by using various skills. This system were enabled to draw straight lines, curves, delete lines, sections of lines, extend lines, cut pattern into sections, measure line or section reproduce whole pattern shape of section, rotate and mirror pattern and complete patterns. 4. Automatic grading of finished master pattern have been developed by creation and modification of grading rules of basic pattern. 5. Production pattern added seam allowance, not-ches was generated by P.D.S menu option. 6. Finished pattern design was plotted out 100% and 20% size by AM-300 Plotter. This results will be the basic materials to develop the CAD SYSTEM if some problems were improve. Furthermore, the utilization of P.D.S is expected to be developing in pattern making process.

  • PDF

3D Virtual Building Technic using Pattern (패턴을 이용한 3D 가상 건축 기술)

  • Han, Jung-Soo;Kim, Gui-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.66-72
    • /
    • 2010
  • This paper is focus on 3D virtual building design technic that construction materials are showed by components and these components are part of patterns, and building design using pattern is possible. To use this technique in process of construction, design, analysis, change, assembly, etc, we will develop flexible building design system that it supports efficient building change and low cost by construction design simulation. Specially also the designer and the user use a pattern and easily will be able to change the building and according to change pattern information of the materials, design of the buildings which are changed creates automatic. Also we will implement knowledge retrieval engine which is necessary to personal skill or visualization.

The Standardization of Developing Method of 3-D Upper Front Shell of Men in Twenties (20대 성인 남성 상반신앞판현상의 평면 전개를 위한 표준화 연구)

  • Cui, Ming-Hai;Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi
    • Fashion & Textile Research Journal
    • /
    • v.9 no.4
    • /
    • pp.418-424
    • /
    • 2007
  • The purpose of this study is to propose a standard of converting 3D shape of men in twenties to 2D patterns. This can be a basis for scientific and automatic pattern making for high quality custom clothes. Firstly, representative 3D body shape of men was modeled. Then the 3D model was divided into 3 shells, front, side and back. Among them, the front shell was divided into 4 blocks by bust line and princess line. Secondly, curves are generated on each block according to matrix combination by grid method. Then triangles were developed into 2D pieces by reflecting the 3D curve length. The grid was arranged to maintain outer curve length. Next, the area of developed pieces and block were calculated and difference ratio between the block area and the developed pieces' area is calculated. Also, area difference ratio by the number of triangles is calculated. The difference ratio was represented as graphs and optimal section is selected by the shape of graphs. The optimal matrix was set considering connection with other blocks. Curves of torso upper front shell were regenerated by the optimal matrix and developed into pieces. We validated it's suitability by comparing difference ratio between the block area and the developed pieces' area of optimal section. The results showed that there was no significant difference between block area and the pieces' area developed by optimal matrix. The optimal matrix for 2D developing could be characterized as two types according to block's shape characteristics, one is affected by triangle number, the other is affected by number of raws more than columns. Through this study, both the 2D pattern developing from 3D body shape and 3D modeling from 2D pattern is possible, so it's standardization also possible.

The Estimation of the Transform Parameters Using the Pattern Matching with 2D Images (2차원 영상에서 패턴매칭을 이용한 3차원 물체의 변환정보 추정)

  • 조택동;이호영;양상민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.83-91
    • /
    • 2004
  • The determination of camera position and orientation from known correspondences of 3D reference points and their images is known as pose estimation in computer vision or space resection in photogrammetry. This paper discusses estimation of transform parameters using the pattern matching method with 2D images only. In general, the 3D reference points or lines are needed to find out the 3D transform parameters, but this method is applied without the 3D reference points or lines. It uses only two images to find out the transform parameters between two image. The algorithm is simulated using Visual C++ on Windows 98.

A Study on Development of Men's Formal Jacket Pattern by 3D Human Body Scan Data -A Focus on Men's in their Late 30s- (3D 인체데이터를 활용한 남성 정장재킷 패턴개발 연구 -30대 후반 남성을 중심으로-)

  • Shin, Kyung-hee;Suh, Chuyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.3
    • /
    • pp.440-458
    • /
    • 2019
  • Based on a 3D body data and pattern comparison analysis, this study developed a formal jacket pattern for men in their late 30s. In order to select the representative type of men in their late 30s, factor analysis and cluster analysis were conducted on data form 319 men, 35 to 39 years old using the anthropometric data from The 7th Size Korea (2015) as the representative body type. The surface of the body surface was developed using a 3D human shape of a male in his 30s in The 6th Size Korea (2010). Then the shape was changed to a flat pattern that confirmed the necessary elements for setting the shape and dimension. Cluster analysis revealed type B as the representative type because it showed the best shape characteristics for men in the late 30s. The drafting method of the final research pattern is as follows. Jacket length: stature/2.5cm, back length: stature/5+8.5cm (constant)], armhole depth: [stature/ 7-1.5cm (constant)], back width: [C/9+9.5cm (constant)]+1cm (ease), front width: [C/9+8.5cm (constant)]+1cm (ease), armscye depth: C/8, front waist darts: 1cm, front closure amount: 2cm.

3-D Finite Element Mesh Generation of Tires Considering Detailed Tread Pattern (상세 트레드 패턴을 반영한 3차원 타이어 유한요소 격자 생성)

  • Cho, Jin-Rae;Kim, Ki-Whan;Hong, Sang-Il;Kim, Nam-Jeon;Kim, Kee-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1615-1622
    • /
    • 2003
  • Being contacted directly with. ground, the tire tread part is in shape of complex patterns of variable ASDs(anti-skid depth) to satisfy various tire performances. However, owing to the painstaking mesh generation job and the extremely long CPU-time, conventional 3-D tire analyses have been performed by either neglecting tread pattern or modeling circumferential grooves only. As a result, such simplified analysis models lead to considerably poor numerical expectations. This paper addresses the development of a 3-D tire mesh generation considering the detailed tread pattern and shows that the contact pressure and frictional energy distribution of tires considering the detailed pattern become better than those by the simplified tire model.

Fabrication of Real 3D Shape Components Using Bi-Sn Alloys (Bi-Sn 합금을 이용한 3차원 미세 구조물의 제작기술 개발)

  • Chung, Sung-Il;Park, Sun-Joon;Im, Yong-Gwan;Choi, Jae-Young;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.624-631
    • /
    • 2004
  • In this paper, new replication techniques fur a metal microcomponent having a real 3D shape were introduced. Helical gear was selected as one of a real 3D microcomponents for this study. The helical gear, which was made of photo-curable resin, was fabricated as a master pattern by microstereolithography technology. Then, a silicone rubber mold was fabricated from the master pattern. Lastly, a final bismuth alloy pattern was transferred from the silicone rubber mold by the microcasting process. In this paper, the replication technique is described in detail from the master pattern to the final pattern with some investigation on factors related to the technique.

A Study on the Fabrication of Various 3D Microstructures using Polymer Deposition System (폴리머 적층 시스템을 이용한 다양한 3 차원 미세 구조물 제작에 관한 연구)

  • Kim, Jong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.686-692
    • /
    • 2012
  • Solid free-form fabrication (SFF) technology was developed to fabricate three-dimensional (3D) scaffolds for tissue engineering (TE) applications. In this study, we developed a polymer deposition system (PDS) and created 3D microstructures using a bioresorbable polycaprolactone (PCL) polymer. Fabrication of 3D scaffolds by PDS requires a combination of several devices, including a heating system, dispenser, and motion controller. The system can process a polymer with extremely high precision by using a 200 ${\mu}m$ nozzle. Based on scanning electron microscope (SEM) images, both the line width and the piled line height were fine and uniform. Several 3D micro-structures, including the ANU pattern (a pattern named after Andong National University), $45^{\circ}$ pattern square, frame, cylindrical, triangular, cross-shaped, and hexagon, have been fabricated using the polymer deposition system.

Optimal Matrix Standardization for Pattern Flattening Using Grid Method -Focused on Young Women's Upper Front Shell- (Grid method에 의한 3차원 형상의 평면전개를 위한 optimal matrix 표준화 연구 -$18{\sim}24$세 여성 Upper Front Shell을 중심으로-)

  • Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1242-1252
    • /
    • 2006
  • Many applications in computer graphics require complex, highly detailed models. However, to control processing time, it is often desirable to use approximations in place of excessively detailed models. Therefore, we have developed the notion of an optimal matrix to simplify the model surface which can then rapidly obtain high quality 2D patterns by flattening the 3D surface. Firstly, the woman's 3D body was modeled based on Size Korea data. Secondly, the 3D model was divided by shell and block for the pattern draft. Thirdly, each block was flattened by the grid and bridge method. Finally, we select the optimal matrix and demonstrate it's efficiency and quality. The proposed approach accommodates surfaces with darts, which are commonly utilized in the clothing industry to reduce the deformation of surface forming and flattening. The resulting optimal matrix could be an initiation of standardization for pattern flattening. This can facilitate much better approximations, in both efficiency and exactness.