• Title/Summary/Keyword: 3D numerical simulation

Search Result 959, Processing Time 0.028 seconds

Design of an Integrated Inductor with Magnetic Core for Micro-Converter DC-DC Application

  • Dhahri, Yassin;Ghedira, Sami;Besbes, Kamel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • This paper presents a design procedure of an integrated inductor with a magnetic core for power converters. This procedure considerably reduces design time and effort. The proposed design procedure is verified by the development of an inductor model dedicated to the monolithic integration of DC-DC converters for portable applications. The numerical simulation based on the FEM (finite elements method) shows that 3D modeling of the integrated inductor allows better estimation of the electrical parameters of the desired inductor. The optimization of the electrical parameter values is based on the numerical analysis of the influence of the geometric parameters on the electrical characteristics of the inductor. Using the VHDL-AMS language, implementation of the integrated inductor in a micro Buck converter demonstrate that simulation results present a very promising approach for the monolithic integration of DC-DC converters.

Numerical simulation of wave slamming on 3D offshore platform deck using a coupled Level-Set and Volume-of-Fluid method for overset grid system

  • Zhao, Yucheng;Chen, Hamn-Ching;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.245-259
    • /
    • 2015
  • The numerical simulation of wave slamming on a 3D platform deck was investigated using a coupled Level-Set and Volume-of-Fluid (CLSVOF) method for overset grid system incorporated into the Finite-Analytic Navier-Stokes (FANS) method. The predicted slamming impact forces were compared with the corresponding experimental data. The comparisons showed that the CLSVOF method is capable of accurately predicting the slamming impact and capturing the violent free surface flow including wave slamming, wave inundation and wave recession. Moreover, the capability of the present CLSVOF method for overset grid system is a prominent feature to handle the prediction of wave slamming on offshore structure.

3D SIMULATION OF FLAPPING FLAGS IN A UNIFORM FLOW BY THE IMMERSED BOUNDARY METHOD

  • Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.141-148
    • /
    • 2007
  • We present an immersed boundary (IB) method for 3D simulation of flappingflags in a uniform flow. The proposed formulation is manipulated on the basis of an efficient Navier-Stokes solver adopting the fractional step method and a staggered Cartesian grid system. A direct numerical method is developed to calculate the flag motion, with the elastic force treated implicitly. The fluid motion defined on an Eulerian grid and the flag motion defined on a Lagrangian grid are independently solved and the mass of flag is handled in a natural way. An additional momentum forcing is formulated from the flag motion equation in a way similar with the direct-forcing IB formulation and acts as the interaction force between the flag and ambient fluid. A series of numerical tests are performed and the present results are compared qualitatively and quantitatively with previous studies. The instantaneous flag motion is analyzed under different conditions and surrounding vortical structures are identified. The effects of physical parameters on the flapping frequency are studied.

  • PDF

Analysis of Hydraulic effect on Removing Side Overflow Type Structures in Woo Ee Stream Basin (우이천 유역의 횡단 월류형 구조물 철거에 의한 수리영향 분석)

  • Moon, Young-Il;Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.687-690
    • /
    • 2008
  • Currently, Stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many reach uppermost limit. In this study, FLOW-3D using CFD(Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-\varepsilon$, RNG(Renomalized Group Theory) $k-\varepsilon$ and LES(Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the side overflow type structures at Jangwall bridge in urban stream.

  • PDF

A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method (미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법)

  • Lee, Sang-Hyuk;Kim, Joo-Han;Lee, Na-Ri;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF

Development of Torso Pattern for Underweight Female in their 20s~30s - Using Clo 3D program - (20~30대 저체중 성인여성의 토르소원형 설계 - Clo 3D 프로그램 적용 사례 -)

  • Lim, Jiyoung
    • The Korean Fashion and Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.963-970
    • /
    • 2013
  • The purpose of this study was to develop torso pattern of underweight female in their 20s~30s by using Clo 3D virtual garment simulation system. The results were as follows; first, as a result of analyzing torso somatotype, underweight women showed lower average than average values of whole women in their twenties and thirties in the items such as length, width, circumference, thickness except for height. Second, by using 3D virtual garment simulation, new torso pattern considered underweight female was development. The basic numerical formula were as follows ; bust girth B/2+3.5, armhole depth B/4+0.5, front waist girth W/4+0.5+0.7, back waist girth W/4+0.5-0.7, front hip girth H/4+1+0.5, back hip girth H/4+1-0.5, chest width B/6+3.1, back width B/6+4.5, neck width B/12+0.2 and neck depth B/12+1.7. Third, by reducing hollowed amount of front, back, and side line, and hollowed amount of back center line, the reduced quantity was included to darts amount. Number of dart was adjusted to two pieces so that darts amount was equally distributed to two darts. Forth, according to the results of the new torso pattern's appearance evaluation, it estimated more highly than existing pattern in silhouette and ease amount, confirming that new torso pattern was appropriate for the underweight women. This study is expected to serve as one of important basic data for ensuing studies that may utilize 3D virtual garment simulation system with 2D patterns, and also for future 3D pattern production program development.

low Velocity Impact Behavior Analysis of 3D Woven Composite Plate Considering its Micro-structure (미시구조를 고려한 3차원 직교직물 복합재료 평판의 저속충격 거동해석)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, we developed the direct numerical simulation(DNS) model considering the geometry of yams which consist of 3D orthogonal woven composite materials, and using this model, the dynamic behavior of under transverse low-velocity impact has been studied. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is presented and used in building structural plate model based on DNS. For comparison, DNS results are compared with those of the micromechanical approach which is based on the global equivalent material properties obtained by DNS static numerical tests. The effects with yarn geometrical irregularities which are difficult to consider in a macroscopic approach are also investigated by the DNS model. Finally, the multiscale model based on the DNS concepts is developed to enhance efficiency of analysis with real sized numerical specimen and macro/micro characteristics are presented.

Three Dimensional Direct Monte Carlo Simulation on OLED Evaporation Process (유기EL 증착 공정에 대한 3차원 Monte Carlo 해석)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • The performance of an OLED(organic luminescent emitting device) fabrication system strongly depends on the design of the evaporation cell-source. Trends in display sizes have hauled the enlargement of mother glass substrates. The enlargement of substrates requires the improvement and the enlargement of the effusion cell-source for OLED evaporation process. The deposited layers should be as uniform as possible, and therefore it is important to know the effusion profile of the molecules emitted from the cell-source. Conventional 2D DSMC algorithm cannot be used for simulating the new concept cell-source design, such as a linear source. This work concerns the development of 3D DSMC (direct simulation Monte Carlo) analysis for simulating the behavior of the evaporation cell-sources. In this paper, the 3D DSMC algorithm was developed and the film thickness profiles were obtained by the numerical analysis.

  • PDF

3-D Numerical Analysis on a low Reynolds Number Mixed Convection in a Horizontal Rectangular Channel (수평 사각채널 내 저 레놀즈수 혼합대류 유동의 3차원 수치해석)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.210-215
    • /
    • 2005
  • A three-dimensional numerical simulation is performed to investigate on a low Reynolds number mixed convection in a horizontal rectangular channel with the upper part cooled and the lower part heated uniformly. The three-dimensional governing equations are solved using a finite volume method. For convective term, the central differencing scheme is used and for the pressure correction, the PISO algorithm is used. Solutions are obtained for A=4, Pr=0.72, 10, 909, the Reynolds number ranging from $2.1{\times}10^{-2}$ to $1.2{\times}10^{-1}$, the Rayleigh number is $3.5{\times}10^4$. It is found that vortex roll structures of mixed convection in horizontal rectangular channel can be classified into three roll structures which affected by Prandtl number and Reynolds number.

  • PDF

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.