• Title/Summary/Keyword: 3D numerical model

Search Result 1,545, Processing Time 0.027 seconds

Analysis of the flood Characteristics in the Woo-Ee Stream Using FLOW-3D (FLOW-3D를 이용한 우이천의 홍수특성 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Jong-Suk;Oh, Keun-Taek;Lee, Su-Gon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.603-607
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze one dimension or two dimension stream flow of domestic rivers that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed three dimensional numerical analysis for correct stream flow interpolation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimension RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-{\backepsilon}$, RNG $k-{\backepsilon}$ and LES. Those numerical analysis results have been illustrated to bends and junctions by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows.

  • PDF

3D numerical simulation of temperature on Pilot tube

  • Ying Wang;Baogeng Ding
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.248-251
    • /
    • 2006
  • Multi-physics problem is considered for the Pitot tube located in uniform freon gas flow with high Mach number and the 3D numerical results of temperature on Pitot tube is given. The model is created by using structural module of ANSYS, the grids are obtained by ICEM, and the problem is solved and the data post-processing is done by CFX.

  • PDF

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

Comparison of Two- and Three-dimensional Approaches for the Numerical Determination of Equivalent Mechanical Properties of Fractured Rock Masses (균열암반의 역학적 등가물성의 수치해석적 결정을 위한 2차원 및 3차원 해석의 비교)

  • Min, Ki-Bok;Thoraval, Alain
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.93-105
    • /
    • 2012
  • This paper compares the two- and three-dimensional (2D and 3D) approaches for the numerical determination of the equivalent mechanical properties of fractured rock masses. Both orthogonally-fractured model and discrete fracture networks (DFN) were used for the geometry and 2D models were cut in various directions from 3D model to compare their mechanical properties. Geological data were loosely based on the data available from Sellafield, UK. Analytical method based on compliance tensor transformation was used for investigation in orthogonally fractured rock and numerical experiments were conducted on fractured rock mass with DFN geometry. It is shown that 2D approach always overestimates the elastic modulus of fractured rock masses by a factor of up to around two because fractures are assumed to be perpendicular to the model plane in 2D problems. Poisson ratios tend to have larger values in 2D analysis while there is opposite trend in some sections. The study quantitatively demonstrates the limitation of the 2D approach that uses the simplified model from true 3D geometry.

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction (파랑-흐름의 상호작용 하에서 지형변동에 관한 3차원 연성 수치모델의 개발)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1463-1476
    • /
    • 2014
  • In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

Numerical Prediction of Tidal Current due to the Density and Wind-driven Current in Yeong-il Bay (하구밀도류와 취송류가 영일만 해수유동에 미치는 영향)

  • YOON HAN-SAM;LEE IN-CHEOL;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2004
  • This study constructed a 3D real-time numerical model that predicts the water quality and movement characteristics of the inner bay, considering the characteristics of the wind-driven current and density current in estuaries, generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The numerical model successfully calculated the seawater circulation current of Yeong-il Bay, using the input conditions oj the real-time tidal current, river discharge, and weather conditions during March 2001. This study also observed the wind-driven current and density current in estuaries that are effected by the seawater circulation pattern of the inner bay. We investigated and analyzed each impact factor, and its relationship to the water quality of Yeong-il bay.

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.

Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method

  • J.R., Cho
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.723-731
    • /
    • 2022
  • Functionally graded materials (FGMs) have been spotlighted as an advanced composite material, accordingly the intensive studies have focused on FGMs to examine their mechanical behaviors. Among them is thermal buckling which has been a challenging subject, because its behavior is connected directly to the safety of structural system. In this context, this paper presents the numerical analysis of thermal buckling of metal-ceramic functionally graded (FG) plates. For an accurate and effective buckling analysis, a new numerical method is developed by making use of (1,1,0) hierarchical model and 2-D natural element method (NEM). Based on 3-D elasticity theory, the displacement field is expressed by a product of 1-D assumed thickness monomials and 2-D in-plane functions which are approximated by NEM. The numerical method is compared with the reference solutions through the benchmark test, from which its numerical accuracy has been verified. Using the developed numerical method, the critical buckling temperatures of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.

A Study on Effect of Beachface Gradient on 3-D Currents around the Open Inlet of Submerged Breakwaters (해빈경사에 따른 잠제 개구부의 3차원적인 흐름특성에 관한 연구)

  • Lee, Woo-Dong;Hur, Dong-Soo;Park, Jong-Bae;An, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • The aim of this study was to survey the effects of the beachface gradient on 3-D currents around the open inlets of submerged breakwaters. First, the numerical model was validated by a comparison with existing experimental data. This model is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve?Structure?Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D). Using the numerical results of this model, the 3-D currents around the open inlets of submerged breakwaters were examined in relation to the beachface gradient. Moreover, the wave height distribution and mean flow around them are also discussed, as well as the distribution of the wave breaking points over the crest.

A Unified 3D Numerical Analysis of a Model Scramjet Engine with a Cavity Flame-Holder and Two Intake Side Walls (공동형 보염기를 갖는 모델 스크램제트 엔진의 흡입구 측면효과를 고려한 3차원 통합 유동해석)

  • Yeom, Hyo-Won;Kim, Sung-Jin;Sung, Hong-Gye;Kang, Sang-Hoon;Yang, Soo-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • To identify the detailed 3D flow characteristics of a model scramjet engine, a unified 3D numerical analysis was performed. The numerical domain of concern includes the entire flow path of the model scramjet engine extending from the intake to the nozzle exhaust. Turbulent models($k-{\omega}$ SST and low Reynolds number k-e with Sarkar model) were applied with comparison of experiment result. Intake side wall's effect on flow characteristics was analyzed in view points of flow quality at inlet duct and near the flame holder as well. The code is paralleled with multi-block feature using MPI(Massage Passing Interface) library to speed up the 3D calculation.

  • PDF