• Title/Summary/Keyword: 3D motion

Search Result 2,044, Processing Time 0.026 seconds

Recognition of Fighting Motion using a 3D-Chain Code and HMM (3차원 체인코드와 은닉마르코프 모델을 이용한 권투모션 인식)

  • Han, Chang-Ho;Oh, Choon-Suk;Choi, Byung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.756-760
    • /
    • 2010
  • In this paper, a new method to recognize various motions of fighting with an aid of HMM is proposed. There are four kinds of fighting motion such as hook, jab, uppercut, and straight as the fighting motion. The motion graph is generalized to define each motion in motion data and the new 3D-chain code is used to convert motion data to motion graphs. The recognition experiment has been performed with HMM algorithm on motion graphs. The motion data is captured by a motion capture system developed in this study and by five actors. Experimental results are given with relatively high recognition rate of at least 85%.

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

CALOS : Camera And Laser for Odometry Sensing (CALOS : 주행계 추정을 위한 카메라와 레이저 융합)

  • Bok, Yun-Su;Hwang, Young-Bae;Kweon, In-So
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.180-187
    • /
    • 2006
  • This paper presents a new sensor system, CALOS, for motion estimation and 3D reconstruction. The 2D laser sensor provides accurate depth information of a plane, not the whole 3D structure. On the contrary, the CCD cameras provide the projected image of whole 3D scene, not the depth of the scene. To overcome the limitations, we combine these two types of sensors, the laser sensor and the CCD cameras. We develop a motion estimation scheme appropriate for this sensor system. In the proposed scheme, the motion between two frames is estimated by using three points among the scan data and their corresponding image points, and refined by non-linear optimization. We validate the accuracy of the proposed method by 3D reconstruction using real images. The results show that the proposed system can be a practical solution for motion estimation as well as for 3D reconstruction.

  • PDF

The Analysis of Stop Motion Animation based on 3D Printing (3D프린팅 기반 스톱모션 애니메이션 분석)

  • Zhang, Wan;Song, Seung-keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.207-209
    • /
    • 2017
  • 3D printing, will make it integrated into one of the important branches of animation art, such as stop-motion Animation, to improve stop-motion Animation and put the modern science and technology and the manual craft into perfect combination. Throughout the development of stop-motion Animation, innovation in traditional concept is needed, to put the 3D printing integrated into traditional making and apply it to stop-motion Animation creation, and make sure to reconsider the animation production technology and production material, exploit its unique and distinctive features in multi-level and multi-angle, reshape art form of stop-motion Animation so as to highlight the advantages of 3D printing in making stop-motion animation.

  • PDF

Jitter Correction of the Face Motion Capture Data for 3D Animation

  • Lee, Junsang;Han, Soowhan;Lee, Imgeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.39-45
    • /
    • 2015
  • Along with the advance of digital technology, various methods are adopted for capturing the 3D animating data. Especially, in 3D animation production market, the motion capture system is widely used to make films, games, and animation contents. The technique quickly tracks the movements of the actor and translate the data to use as animating character's motion. Thus the animation characters are able to mimic the natural motion and gesture, even face expression. However, the conventional motion capture system needs tricky conditions, such as space, light, number of camera etc. Furthermore the data acquired from the motion capture system is frequently corrupted by noise, drift and surrounding environment. In this paper, we introduce the post production techniques to stabilizing the jitters of motion capture data from the low cost handy system based on Kinect.

3D Animation Body Profiles from Full-body Scans and Motion Capture (풀바디 스캔과 모션 캡처를 활용한 3D 애니메이션 바디 프로필)

  • Jaewon Song;Sang Wook Chun;Subin Lee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2023
  • This paper proposes a 3D animated body profile using 3D body scanning and motion capture devices. Users can create their own personalized body profiles with animation by performing 3D scans for a predetermined set of poses. To achieve this, a template animation was obtained through motion capture for a series of poses, and the acquired 3D scan data from users was mapped to the key poses of the animation using Pose-space deformer. The resulting 3D animated body profiles provide users with greater satisfaction compared to traditional static 2D images or 3D scan data.

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

Adaptive Video Watermarking based on 3D-DCT Using Image Characteristics (영상 특성을 이용한 3D-DCT 기반의 적응적인 비디오 워터마킹)

  • Park Hyun;Lee Sung-Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.68-75
    • /
    • 2006
  • In this paper, we propose an adaptive video watermarking method using human visual system(HVS) and characteristics of three-dimensional cosine transform (3D-DCT) cubes. We classify 3D-DCT cubes into three patterns according to the distribution of coefficients in the 3D-DCT cube: cube with motion and textures, cube with high textures and little motion, and cube with little textures and line motion. Images are also classified into three types according to the ratio of these patterns: images with motion and textures, images with high textures and little motion, and images with little textures and little motion. The proposed watermarking method adaptivelyinserts the watermark on the coefficients of the mid-range in the 3D-DCT cube using the appropriately learned sensitivity table and the proportional constants depending on the patterns of 3D-DCT cubes and types of images. Experimental results show that the proposed method achieves better performance in terms of invisibility and robustness than the previous method.

Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage (3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계)

  • Kim, Jung Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.