• Title/Summary/Keyword: 3D motion

Search Result 2,044, Processing Time 0.037 seconds

Clinical Study on 1 Case of Cervical Dystonia Treated by Korean Medicine and Transfer Energy Capacitive and Resistive (TECAR) Therapy (Transfer Energy Capacitive and Resistive (TECAR) Therapy와 한방치료를 병행한 경부 근 긴장성 사경 환자 증례 보고 1예)

  • Lee, Won-Jun;Yoon, Young-Suk;Kim, Jong-Ho;Lee, Keun-Jae;Kim, Mi-Hye;Ryu, Ho-Sun;Han, Su-Bin;Park, Byung-Hak;Son, Jae-Min;Lee, Nam-Woo;Han, Jeong-Hun;Seo, Hye-Jin;Kim, Ji-Hoon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.4
    • /
    • pp.109-115
    • /
    • 2019
  • Cervical dystonia (CD) is a disorder characterized by sustained or intermittent, involuntary muscle contractions which cause twisting, repetitive movements and abnormal postures. In this case report, a CD patients was treated with transfer energy capacitive and resistive (TECAR) therapy and conventional Korean medicine, which consists of acupuncture, Chuna manual medicine, pharmacopuncture and herbal medicine. For outcome measures, this study evaluated Cobb's angle, EuroQol five dimension scale (EQ-5D), numerical rating scale (NRS), neck disabillity index (NDI) and cervical range of motion. As a result, improvements were found in Cobb's angle ($18.65^{\circ}$ to $15.90^{\circ}$), EQ-5D score (0.808 to 0.862), NRS (5 to 3), NDI (16 to 8) and angle of cervical lateral bending ($15^{\circ}$ to $25^{\circ}$). In conclusion, this study shows that combined therapy of conventional Korean medicine treatment and TECAR therapy can be effective for CD patients.

Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes (9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구)

  • Lee, Cheol-Ho;Kim, Sung-Yong;Park, Ji-Hun;Kim, Dong-Kwan;Kim, Tae-Jin;Park, Kyoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).

Effects of Walking Speeds and Cognitive Task on Gait Variability (보행속도변화와 동시 인지과제가 보행 가변성에 미치는 영향)

  • Choi, Jin-Seung;Kang, Dong-Won;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.49-58
    • /
    • 2008
  • The purpose of this study was to identify effects of walking speed and a cognitive task during treadmill walking on gait variability. Experiments consisted of 5 different walking speeds(80%, 90%, 100%, 110% and 120% of preferred walking speed) with/without a cognitive task. 3D motion analysis system was used to measure subject's kinematic data. Temporal/spatial variables were selected for this study; stride time, stance time, swing time, step time, double support time, stride length, step length and step width. Two parameters were used to compare stride-to-stride variability with/without cognitive task. One is the coefficient of variance which is used to describe the amount of variability. The other is the detrended fluctuation analysis which is used to infer self-similarity from fluctuation of aspects. Results showed that cognitive task may influence stride-to-stride variability during treadmill walking. Further study is necessary to clarify this result.

The Effect of Robot Therapy on Upper Extremity Function in a Patient With Parkinson's Disease (로봇치료가 파킨슨병 환자의 상지 기능에 미치는 영향)

  • Lee, Inseon;Kim, Jongbae;Park, Ji-Hyuk;Park, Hae Yean
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.3
    • /
    • pp.59-78
    • /
    • 2018
  • Objective : The purpose of this study was to investigate the effect of robot-assisted therapy on upper extremity function. Methods : This study used a single-subject experimental A-B-A' design. Three Parkinson's disease patients took part. Each subject received a robot-assisted therapy intervention (45 min/session, 5 sessions/week for 4 weeks). Upper extremity movement was evaluated with the Reo Assessment tool in Reogo. The Jebsen-Taylor hand motor function test, Fugle-Mayer Assessment score, Box and Block Test, and Nine-hole pegboard test were assessed pre- and post-intervention. Results : After intervention, all subjects underwent 3D motion analysis of reaching function. There was overall improvement in resistance, smoothness, direction accuracy, path efficiency, initiation time, and time to moving target with robot-assisted therapy. Robot-assisted therapy may have a positive effect on upper extremity movement in Parkinson's disease. Conclusion : Robot-assisted therapy is considered an alternative in clinical occupational therapy to improve upper extremity function in Parkinson's disease.

Biomechanical Efficacy of a Combined Flexible Cage with Pedicle Screws with Spring rods: A Finite Element Analysis (Spring rod를 사용한 척추경 나사못과 동반 시술된 Flexible cage의 생체역학적 효과)

  • Kim, Y.H.;Park, E.Y.;Kim, W.H.;Hwang, S.P.;Park, K.W.;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Recently, flexible cages have been introduced in an attempt to absorb and reduce the abnormal load transfer along the anterior parts of the spine. They are designed to be used with the pedicle screw systems to allow some mobility at the index level while containing ROM at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the flexible cage when combined with pedicle screws with flexible rods. The post-operated models were constructed by modifying the L4-5 of a previously-validated 3-D FE model of the intact lumbar spine (L2-S1): (1) Type 1, flexible cage only; (2) Type 2, pedicle screws with flexible rods; (3) Type 3, interbody fusion cage plus pedicle screws with rigid rods; (4) Type 4, interbody fusion cage plus Type 2; (5) Type 5, Type 1 plus Type 2. Flexion/extension of 10 Nm with a compressive follower load of 400N was applied. As compared to the Type 3 (62~65%) and Type 4 (59~62%), Type 5 (53~55%) was able to limit the motion at the operated level effectively, despite moderate reduction at the adjacent level. It was also able to shift the load back to the anterior portions of the spine thus relieving excessively high posterior load transfer and to reduce stress on the endplate by absorbing the load with its flexible shape design features. The likelihood of component failure of flexble cage remained less than 30% regardless of loading conditions when combined with pedicle screws with flexible rods. Our study demonstrated that flexible cages when combined with posterior dynamic system may help reduce subsidence of cage and degeneration process at the adjacent levels while effectively providing stability at the operated level.

The Kinematic analysis of the third Hurdling motions of The 110m Hurdles Elite (엘리트 110m 허들선수의 세 번째 허들링 동작에 관한 운동학적 분석)

  • Lee, Jung-Ho;Park, Young-Jin;Ryu, Jae-Kyun;Kim, Jong-In
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2008
  • The purposes of this study were to compare and analyze the world elite hurdler and the domestic hurdler 3-D kinematic and kinetic techniques about hurdling motion in the 110m hurdles. After analyzing variables in the 110m hurdle run the following conclusions were obtained; In a preparation phase, the domestic hurdler came out running more 0.13m then world elite hurdler from grounding to taking off in the height of center of gravity and the distance by 1.04m. In a flight phase, the domestic hurdler came out taking off 0.33m less then world elite hurdler from taking off to flight peak in the height of center of gravity and the distance by 1.63m. In a flight peak phase, domestic hurdler came out landing more 0.37m then world elite hurdler by 159m. More over, during the hurdling, the horizontal velocity of center of gravity came out decreasing from taking off to landing with domestic hurdler by 0.75m/s. the take off percentage and the landing percentage is 53:47. In a acceleration phase, domestic hurdler came out going slower 0.54m/s than world elite hurdler from landing in the horizontal velocity of center of gravity by 8.78m/s.

Tracking Moving Object using Hierarchical Search Method (계층적 탐색기법을 이용한 이동물체 추적)

  • 방만식;김태식;김영일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.568-576
    • /
    • 2003
  • This paper proposes a moving object tracking algorithm by using hierarchical search method in dynamic scenes. Proposed algorithm is based on two main steps: generation step of initial model from different pictures, and tracking step of moving object under the time-yawing scenes. With a series of this procedure, tracking process is not only stable under far distance circumstance with respect to the previous frame but also reliable under shape variation from the 3-dimensional(3D) motion and camera sway, and consequently, by correcting position of moving object, tracking time is relatively reduced. Partial Hausdorff distance is also utilized as an estimation function to determine the similarity between model and moving object. In order to testify the performance of proposed method, the extraction and tracking performance have tested using some kinds of moving car in dynamic scenes. Experimental results showed that the proposed algorithm provides higher performance. Namely, matching order is 28.21 times on average, and considering the processing time per frame, it is 53.21ms/frame. Computation result between the tracking position and that of currently real with respect to the root-mean-square(rms) is 1.148. In the occasion of different vehicle in terms of size, color and shape, tracking performance is 98.66%. In such case as background-dependence due to the analogy to road is 95.33%, and total average is 97%.

Development of Gait Event Detection Algorithm using an Accelerometer (가속도계를 이용한 보행 시점 검출 알고리즘 개발)

  • Choi, Jin-Seung;Kang, Dong-Won;Mun, Kyung-Ryoul;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • The purpose of this study was to develop and automatic gait event detection algorithm using single accelerometer which is attached at the top of the shoe. The sinal vector magnitude and anterior-posterior(x-axis) directional component of accelerometer were used to detect heel strike(HS) and toe off(TO), respectively. To evaluate proposed algorithm, gait event timing was compared with that by force plate and kinematic data. In experiment, 7 subjects performed 10 trials level walking with 3 different walking conditions such as fast, preferred & slow walking. An accelerometer, force plate and 3D motion capture system were used during experiment. Gait event by force plate was used as reference timing. Results showed that gait event by accelerometer is similar to that by force plate. The distribution of differences were spread about $22.33{\pm}17.45m$ for HS and $26.82{\pm}14.78m$ for To and most error was existed consistently prior to 20ms. The difference between gait event by kinematic data and developed algorithm was small. Thus it can be concluded that developed algorithm can be used during outdoor walking experiment. Further study is necessary to extract gait spatial variables by removing gravity factor.

A Study on the Manufacture of the Artificial Cardiac Tissue Valve (생체판의 제작 및 실험)

  • Kim, Hyoung-Mook;Song, Yo-Jun;Sohn, Kwang-Hyun
    • Journal of Chest Surgery
    • /
    • v.12 no.4
    • /
    • pp.383-394
    • /
    • 1979
  • Treatment of valvular heart disease with valve replacement has been one of the most popular procedures in cardiac surgery recently. Although, first effort was directed toward the prosthetic valve, it soon became popular that bioprosthesis, the valvular xenograft, was prefered in the majority cases. Valvular xenograft has some superiority to the artificial prosthetic valve in some points of thromboembolism and hemolytic anemia, and it also has some inferiority of durability, immunologic reaction and resistance to Infection. Tremendous efforts were made to cover the inferiority with several methods of collection, preservation, and valve mounting of the porcine valve or pericardium of the calf, and also with surgical technique of the valvular xenograft replacement. Auther has collected 320 porcine aortic valves immediately after slaughter, and aortic cusps were coapted with cotton balls in the Valsalva sinuses to protect valve deformity after immersion in the Hanks' solution, and oxidation, cross-linking and reduction procedures were completed after the proposal of Carpentier in 1972. Well preserved aortic valves were suture mounted in the hand-made tissue valve frame of 19, 21, and 23 mm J.d., and also in the prosthetic vascular segment of 19 mm Ld. with 4-0 nylon sutures after careful trimming of the aortic valves. Completed valves were evaluated with bacteriologic culture, pressure tolerance test with tolerane gauge, valve durability test in the saline glycerine mixed solution with tolerance test machine in the speed of 300 rpm, and again with pathologic changes to obtain following results: 1. Bacteriologic culture of the valve tissue in five different preservation method for two weeks revealed excellent and satisfactory result in view of sterilization including 0.65% glutaraldehyde preservation group for one week bacteriologic culture except one tissue with Citobacter freundii in 75% ethanol preserved group. 2. Pressure tolerance test was done with an apparatus composed of V-connected manometer and pressure applicator. Tolerable limit of pressure was recorded when central leaking jet of saline was observed. Average pressure tolerated in each group was 168 mmHg in glutaraldehyde, 128 mmHg in formaldehyde, 92 mmHg in Dakin's solution, 48 mmHg in ethylene oxide gas, and 26 mmHg in ethanol preserved group in relation to the control group of Ringer's 90 mmHg respectively. 3. Prolonged durability test was performed in the group of frame mounted xenograft tissue valve with 300 up-and-down motion tolerance test machine/min. There were no specific valve deformity or wearing in both 19, 21, and 23 mm valves at the end of 3 months (actually 15 months), and another 3 months durability test revealed minimal valve leakage during pressure tolerance test due to contraction deformity of the non-coronary cusp at the end of 6 months (actually 30 months) in the largest 23 mm group. 4. Histopathologic observation was focussed in three view points, endothelial cell lining, collagen and elastic fiber destructions in each preservation methods and long durable valvular tolerance test group. Endothel ial cell lining and collagen fiber were well preserved in the glutaraldehyde and formaldehyde treated group with minimal destruction of elastic fiber. In long durable tolerance test group revealed complete destruction of the endothelial cell lining with minimal destruction of the collagen and elastic fiber in 3 month and 6 month group in relation to the time and severity. In conclusion, porcine xenograft treated after the proposal of Carpentier in 1972 and preserved in the glutaraldehyde solution was the best method of collection, preservation and valve mounting. Pressure tolerance and valve motion tolerance test, also, revealed most satisfactory results in the glutaraldehyde preserved group.

  • PDF

Development of the Whole Body 3-Dimensional Topographic Radiotherapy System (3차원 전신 정위 방사선 치료 장치의 개발)

  • Jung, Won-Kyun;Lee, Byung-Yong;Choi, Eun-Kyung;Kim, Jong-Hoon;An, Seung-Do;Lee, Seok;Min, Chul-Ki;Park, Cham-Bok;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1999
  • For the purpose of utilization in 3-D conformal radiotherapy and whole body radiosurgery, the Whole Body 3-Dimensional Topographic Radiation Therapy System has been developed. Whole body frame was constructed in order to be installed on the couch. Radiopaque catheters were engraved on it for the dedicated coordinate system and a MeV-Green immobilizer was used for the patient setup by the help of side panels and plastic rods. By designing and constructing the whole body frame in this way, geometrical limitation to the gantry rotation in 3-D conformal radiotherapy could be minimized and problem which radiation transmission may be altered in particular incident angles was solved. By analyzing CT images containing information of patient setup with respect to the whole body frame, localization and coordination of the target is performed so that patient setup error may be eliminated between simulation and treatment. For the verification of setup, the change of patient positioning is detected and adjusted in order to minimize the setup error by means of comparison of the body outlines using 3 CCTV cameras. To enhance efficiency of treatment procedure, this work can be done in real time by watching the change of patient setup through the monitor. The method of image subtraction in IDL (Interactive Data Language) was used to visualize the change of patient setup. Rotating X-ray system was constructed for detecting target movement due to internal organ motion. Landmark screws were implanted either on the bones around target or inside target, and variation of target location with respect to markers may be visualized in order to minimize internal setup error through the anterior and the lateral image information taken from rotating X-ray system. For CT simulation, simulation software was developed using IDL on GUI(Graphic User Interface) basis for PC and includes functions of graphic handling, editing and data acquisition of images of internal organs as well as target for the preparation of treatment planning.

  • PDF