• Title/Summary/Keyword: 3D mesh data

Search Result 218, Processing Time 0.029 seconds

The 2D Finite Element Analysis in Nakdong-Kumho River Junction using GIS (GIS를 이용한 낙동강-금호강 합류부의 2차원 유한요소해석)

  • Hwang, Jae-Hong;Han, Kun-Yeun;Nam, Ki-Young;Choi, Seung-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.21-34
    • /
    • 2009
  • Usually in flood flow problems, one-dimensional approach does not provide the required details of complex flow phenomena such as the flow in braided rivers and river junction. In this study, two-dimensional finite element mesh is constructed using DEM and GIS tool, and applied to RMA-2model. The purpose of this study is to investigate the applicability of the two dimensional model in natural rivers and to analyze characteristics of river flow due to the change of cross section. For model calibration, the result of unsteady flow analysis was compared with the observed data. Accordingly, the SMS model in this study prove to be very effective and reliable tool for the simulation of hydrodynamic characteristics under the various flow conditions.

  • PDF

Collision Analysis between FRP Fishing Boats According to Various Configurations (여러 가지 충돌 상황에 따른 FRP 어선 간의 충돌 해석)

  • Jang, In-Sik;Kim, Yong-Seop;Kim, Il-Dong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.253-262
    • /
    • 2006
  • In this paper, collision analysis is carried out between two FRP fishing boats. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the boat is constructed using 3-D CAD program. The formation of a finite element from a geometric data of the boats is carried out using HYPERMESH that is the commercial software for mesh generation and post processing. Twelve collision configurations are established by combining two kinds of contact angle($90^{\circ},\;135^{\circ}$) and three different speed(5, 10, 15knot) for small and large boats. Collision analysis is accomplished using DYNA3D. Stress distribution and deformation shape are investigated for each collision condition. In general, $90^{\circ}$ collision angle generate larger stress than $135^{\circ}$ case and the collision for two moving boats showed larger maximum stress than the case that one is moving and the other is stationary. When analysis is carried out until 150ms contact parts of two boats are broken for 10 and 15knot collision speed, in which maximum stress is larger than ultimate strength of the material.

  • PDF

Physiological Profile of Growing Rats: Effects of Cage Type and Cage Density

  • Yildiz, A.;Hayirli, A.;Okumus, Z.;Kaynar, O.;Kisa, F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.263-272
    • /
    • 2007
  • This experiment was conducted to examine the effects of cage type (CT) and cage density (CD) on physiological variables in growing rats. Sprague Dawley rats (n=108) weighing an average of 46 g were housed in metallic cage with woodchip bedding (MCWB), metallic cage with wire mesh (MCWM), and plastic shoebox with woodchip bedding (PCWB) separately by sex at normal ($160-cm^2/rat$, ND) and high ($80-cm^2/rat$, HD) CD from 3 to 10 wks of age. All cages were in dimension of $24{\times}40{\times}20$ cm ($W{\times}D{\times}H$). At the end of the experiment, blood samples were collected and 6 rats from each cage were sacrificed. No death was observed among rats at ND, whereas mortality rate at HD was 22.3% for males and 13.9% for females. Heart weight was affected by CT. Doubling CD caused 23, 11.8, 17.9, 8.6, 6.9, and 16.4% decreases in BW and weights of heart, liver, kidney, testis, and ovary, respectively. Except for adrenal gland, other organs for males were heavier than for females. Liver weight of males and females responded differently to CT and CD. Comparing with females, males had 7.3 and 5.2% heavier and 9.9% lighter liver weights in MCWB, MCWM, and PCWB, respectively. As CD doubled, liver weight for males and females decreased by 22.4 and 13.1%, respectively. Mean adrenal gland weight increased by 8.4% and decreased by 9.7% for males and females, respectively, with doubling CD. CT affected glucose, TG, Ca, and ALP levels. However, CD did not alter blood chemistry. Rats housed in metallic cages had greater neutrophil count and neutrophil:lymphocyte ratio than rats housed in plastic cages. Doubling CD caused a 24.2% increase in lymphocyte count. There were CT by CD, CT by sex, and CD by sex interaction effects on lymphocyte count. Doubling CD caused 0.1% decrease and 49.8 and 26.7% increases in lymphocyte count for rats housed in MCWB, MCWM, and PCWB, respectively. Comparing with females, lymphocyte count for males housed in MCWB, MCWM, and PCWB had 8.9 and 12.9% greater and 30.3% less lymphocyte counts, respectively. Lymphocyte count decreased by 4.12% for males, whereas it increased by 61.0% for females as CD doubled. Doubling CD resulted in 2.5 and 2.3% increases in erythrocyte count and hematocrit value. These data suggest that animals perform better in metallic cages than in plastic cages and that cage density had pronounceable effects on physiological parameters in a cage type and sex dependent-manner.

Large eddy simulation on the turbulent mixing phenomena in 3×3 bare tight lattice rod bundle using spectral element method

  • Ju, Haoran;Wang, Mingjun;Wang, Yingjie;Zhao, Minfu;Tian, Wenxi;Liu, Tiancai;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1945-1954
    • /
    • 2020
  • Subchannel code is one of the effective simulation tools for thermal-hydraulic analysis in nuclear reactor core. In order to reduce the computational cost and improve the calculation efficiency, empirical correlation of turbulent mixing coefficient is employed to calculate the lateral mixing velocity between adjacent subchannels. However, correlations utilized currently are often fitted from data achieved in central channel of fuel assembly, which would simply neglect the wall effects. In this paper, the CFD approach based on spectral element method is employed to predict turbulent mixing phenomena through gaps in 3 × 3 bare tight lattice rod bundle and investigate the flow pulsation through gaps in different positions. Re = 5000,10000,20500 and P/D = 1.03 and 1.06 have been covered in the simulation cases. With a well verified mesh, lateral velocities at gap center between corner channel and wall channel (W-Co), wall channel and wall channel (W-W), wall channel and center channel (W-C) as well as center channel and center channel (C-C) are collected and compared with each other. The obvious turbulent mixing distributions are presented in the different channels of rod bundle. The peak frequency values at W-Co channel could have about 40%-50% reduction comparing with the C-C channel value and the turbulent mixing coefficient β could decrease around 25%. corrections for β should be performed in subchannel code at wall channel and corner channel for a reasonable prediction result. A preliminary analysis on fluctuation at channel gap has also performed. Eddy cascade should be considered carefully in detailed analysis for fluctuating in rod bundle.

Composite model for seawater intrusion in groundwater and soil salinization due to sea level rise (해수면 상승으로 인한 지하수 해수침투 및 토양 염류화 합성 평가모델)

  • Jung, Euntae;Park, Namsik;Cho, Kwangwoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.387-395
    • /
    • 2017
  • Sea level rise, accompanied by climate change, is expected to exacerbate seawater intrusion in the coastal groundwater system. As the salinity of saturated groundwater increases, salinity can increase even in the unsaturated soil above the groundwater surface, which may cause crop damage in the agricultural land. The other adverse impact of sea level rise is reduced unsaturated soil thicknesses. In this study, a composite model to assess impacts of sea level rise in coastal agricultural land is proposed. The composite model is based on the combined applications of a three dimensional model for simulating saltwater intrusion into the groundwater and a vertical one dimensional model for simulating unsaturated zone flow and transport. The water level and salinity distribution of groundwater are calculated using the three dimensional seawater intrusion model. At some uppermost nodes, where salinity are higher than the reference value, of the 3D mesh one dimensional unsaturated zone modeling is conducted along the soil layer between the ground water surface and the ground surface. A particular location is judged salinized when the concentration at the root-zone depth exceeds the tolerable salinity for ordinary crops. The developed model is applied to a hypothetical agricultural reclamation land. IPCC RCP 4.5 and 8.5 scenarios were used as sea level rise data. Results are presented for 2050 and 2100. As a result of the study, it is predicted that by 2100 in the climate change scenario RCP 8.5, there will be 7.8% increase in groundwater saltwater-intruded area, 6.0% increase of salinized soil area, and 1.6% in increase in water-logging area.

Effect of thread design on the marginal bone stresses around dental implant (임플란트 나사산 디자인이 변연골 응력에 미치는 영향)

  • Lee, Sang-Hyun;Jo, Kwang-Heon;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.316-323
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of different thread designs on the marginal bone stresses around dental implant. Materials and methods: Standard ITI implant(ITI Dental Implant System; Straumann AG, Waldenburg, Switzerland), 4.1 mm in diameter and 10 mm in length, was selected as control. Test implants of four different thread patterns were created based on control implant, i.e. maintaining all geometrical design of control implant except thread pattern. Four thread designs used in test implants include (1) small V-shape screw (model A), (2) large V-shape screw (model B), (3) buttress screw (model C), and (4) trapezoid screw (model D). Surface area for unit length of implant was 14.4 $mm^2$ (control), 21.7 (small V-shape screw), 20.6 (large V-shape screw), 17.0 (buttress screw) and 28.7 $mm^2$ (trapezoid screw). Finite element models of implant/bone complex were created using an axisymmetric scheme with the use of NISA II/DISPLAY III (Engineering Mechanics Research Corporation, Troy, MI, USA). A load of 100 N applied to the central node on the crown top either in parallel direction or at 30 degree to the implant axis (in order to apply non-axial load to the implant NKTP type 34 element was employed). Quantification and comparison of the peak stress in the marginal bone of each implant model was made using a series of regression analyses based on the stress data calculated at the 5 reference points which were set at 0.2, 0.4, 0.6, 0.8 and 1.0 mm from implant wall on the marginal bone surface. Results: Results showed that although severe stress concentration on the marginal bone cannot be avoided a substantial reduction in the peak stress is achievable using different thread design. The peak marginal bone stresses under vertical loading condition were 7.84, 6.45, 5.96, 6.85, 5.39 MPa for control and model A, B, C and D, respectively. And 29.18, 26.45, 25.12, 27.37, 23.58 MPa when subject to inclined loading. Conclusion: It was concluded that the thread design is an important influential factor to the marginal bone stresses.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Blood Flow Simulation in Bifurcated Geometry of Abdominal and Iliac Arteries Based on CT Images (CT영상에 기반한 복부대동맥과 장골동맥 분기관 모델의 혈류유동 해석)

  • Hong Y. S.;Kim M. C.;Kang H. M.;Lee C. S.;Kim C. J.;Lee J. M.;Kim D. S.;Lee K.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.497-503
    • /
    • 2004
  • Numerical simulation of blood flow has been conducted based on real vessel geometries generated front DICOM medical images of abdominal and iliac bifurcated arteries of a healthy man. A program was developed to read cross sectional images of the three dimensional arteries and smoothly extract boundary coordinates of vessels. Commercial programs were employed for mesh generation and flow simulation. Pressures, velocities, and flow distributions were found to lie within normal physiological ranges. Peak velocity measured in the iliac artery by ultrasound was 20% smaller than that obtained by simulation. The trend of velocity variation in a cardiac cycle was fairly similar between the simulation and the ultrasonic measurements. Simulation based on real vessel geometry of individual patient provides information on pressure, velocity, and its distribution in the diseased arteries or arteries to be surgically treated. The results of simulation may help surgeons to better understand hemodynamic status and surgical need of the patient by revealing variation of the hemodynamic parameters. Futhermore, they may serve as basic data for surgical treatment of arteries. This research is expected to develop to a program in the future that early diagnose atherosclerosis by showing distribution of a hemodynamic index closely related to atherosclerosis in arteries.