• 제목/요약/키워드: 3D map

검색결과 1,489건 처리시간 0.029초

Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Min, Byoung-keol;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • 한국토양비료학회지
    • /
    • 제50권5호
    • /
    • pp.422-433
    • /
    • 2017
  • Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we developed for estimating garlic growth at field scale model in major cultivation regions. We used the $NDVI_{UAV}$ that reflects the crop conditions, and seven meteorological elements for 3 major cultivation regions from 2015 to 2017. For this study, UAV imagery was taken at Taean, Changnyeong, and Hapcheon regions nine times from early February to late June during the garlic growing season. Four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.), and fresh weight (F.W.) were measured for twenty plants per plot for each field campaign. The multiple linear regression models were suggested by using backward elimination and stepwise selection in the extraction of independent variables. As a result, model of cold type explain 82.1%, 65.9%, 64.5%, and 61.7% of the P.H., F.W., L.N., P.D. with a root mean square error (RMSE) of 7.98 cm, 5.91 g, 1.05, and 3.43 cm. Especially, model of warm type explain 92.9%, 88.6%, 62.8%, 54.6% of the P.H., P.D., L.N., F.W. with a root mean square error (RMSE) of 16.41 cm, 9.08 cm, 1.12, 19.51 g. The spatial distribution map of garlic growth was in strong agreement with the field measurements in terms of field variation and relative numerical values when $NDVI_{UAV}$ was applied to multiple linear regression models. These results will also be useful for determining the UAV multi-spectral imagery necessary to estimate growth parameters of garlic.

적분방정식 기반의 3차원 모델링을 이용한 소형 루프형 해양 전자탐사 자료의 반응 분석 (Response Analysis of Data Acquired by Marine Loop Electromagnetic System Using Three-Dimensional Modeling Based on Integral Equation)

  • 고휘철;박인화;이성곤
    • 지구물리와물리탐사
    • /
    • 제17권1호
    • /
    • pp.21-27
    • /
    • 2014
  • 심해탐사를 위해 새롭게 개발된 소형 루프형 해양 전자탐사 시스템의 실해역 실험 결과의 반응 양상을 적분방정식 기반의 3차원 모델링을 통하여 분석하였다. 수심 약 300 m 해저환경에서 획득한 금속 이상체의 전자기 반응 양상에 대한 영향인자를 분석하기 위해 이상체의 크기와 모양을 다르게 설정하여 모델링을 수행하였다. 모델링 결과 분석을 통하여 이상체의 모양이 크기보다 반응 양상에 더 큰 영향을 주는 것을 확인하였다. 탐사고도와 주파수에 따른 반응값 변화를 알아보기 위해 모델링을 수행하였고 이를 통해 일정한 탐사 고도 유지의 필요성과 주파수 대역에 따른 허수부의 민감도를 확인하였다. 또한 탐사 고도와 주파수에 따른 반응값을 단면 그래프로 나타내어 시스템에 사용되는 주파수 대역에 대한 적절한 탐사고도를 제시하였다. 본 연구를 통해 도출된 결과는 해저 열수광상 실해역 탐사 설계 시 매개변수 설정에 있어 유용한 정보를 줄 것으로 예상된다.

위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구 (A Study on Lightweight CNN-based Interpolation Method for Satellite Images)

  • 김현호;서두천;정재헌;김용우
    • 대한원격탐사학회지
    • /
    • 제38권2호
    • /
    • pp.167-177
    • /
    • 2022
  • 위성 영상 촬영 후 지상국에 전송된 영상을 이용하여 최종 위성 영상을 획득하기 위해 많은 영상 전/후 처리 과정이 수반된다. 전/후처리 과정 중 레벨 1R 영상에서 레벨 1G 영상으로 변환 시 기하 보정은 필수적으로 요구된다. 기하 보정 알고리즘에서는 보간 기법을 필연적으로 사용하게 되며, 보간 기법의 정확도에 따라서 레벨 1G 영상의 품질이 결정된다. 또한, 레벨 프로세서에서 수행되는 보간 알고리즘의 고속화 역시 매우 중요하다. 본 논문에서는 레벨 1R에서 레벨 1G로 변환 시 기하 보정에 필요한 경량화된 심층 컨볼루션 신경망 기반 보간 기법에 대해 제안하였다. 제안한 기법은 위성 영상의 해상도를 2배 향상하며, 빠른 처리 속도를 위해 경량화된 심층 컨볼루션 신경망으로 딥러닝 네트워크를 구성하였다. 또한, panchromatic (PAN) 밴드 정보를 활용하여 multispectral (MS) 밴드의 영상 품질 개선이 가능한 피처 맵 융합 방법을 제안하였다. 제안된 보간 기술을 통해 획득한 영상은 기존의 딥러닝 기반 보간 기법에 비해 정량적인 peak signal-to-noise ratio (PSNR) 지표에서 PAN 영상은 약 0.4 dB, MS 영상은 약 4.9 dB 개선된 결과를 보여주었으며, PAN 영상 크기 기준 36,500×36,500 입력 영상의 해상도를 2배 향상된 영상 획득 시 기존 딥러닝 기반 보간 기법 대비 처리 속도가 약 1.6배 향상됨을 확인하였다.

핫스팟 분석을 통한 거창지역의 선구조선과 진앙의 상관관계 분석 (Relationship Analysis between Lineaments and Epicenters using Hotspot Analysis: The Case of Geochang Region, South Korea)

  • 조현우;지광훈;차성은;김은지;이우균
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.469-480
    • /
    • 2017
  • 본 연구는 기상청에서 지진의 계기관측이 시작된 1978년부터 2016년까지, 규모 2.0~2.5사이의 소규모 지진이 6회 발생한 경상남도 거창군 일원지역을 대상으로 수치표고모델을 이용한 3차원의 LANDSAT 8호 위성영상과 음영기복도로부터 선구조선을 추출하여 선구조선과 진앙(지진발생위치)간의 상관관계를 분석하였다. 선구조선의 통계분석 방법으로는 직각격자에 의한 단절현상 문제점을 완화하고 선구조선의 공간적 분포를 정확히 표현해줄 수 있는 육각격자 모양과, 격자크기에 따라 변화하는 밀도 값이 안정되는 지점의 격자크기를 사용하여 핫스팟 분석을 수행하였다. 핫스팟 분석방법은 선구조선이 집단화되어 나타나는 지역을 통계적으로 파악할 수 있기 때문에, 선구조선의 각 통계요소별(빈도, 교차점, 길이)로 도출되는 Z score를 통해 선구조선 밀집지역을 확인하였다. 또한 연산된 선구조선의 밀도와 진앙간의 상관성을 분석하기 위해 진앙에서의 Z score를 표준정규분포 상에 나타내어 선구조선의 밀도가 통계적으로 의미 있는 수준인지를 확인하였다. 그 결과, 6개의 진앙에서 3개 종류의 통계요소로 기록된 총 18개의 Z score 중 약 83%에 달하는 15개 값이 1.65 이상으로 나타났다. 이는 표준정규분포 상에서 95% 이상의 높은 밀도 값을 의미하여, 진앙이 선구조선 고밀도지역에 위치함을 알 수 있었다. 특히 선구조선 빈도는 모든 진앙에서, 교차점은 하나의 진앙을 제외한 나머지 진앙에서 밀도 값이 표준정규분포 상 95% 이상을 나타내어, 선구조선의 빈도와 교차점 밀도가 진앙과 높은 상관성이 있음을 확인하였다. 선구조선의 밀도 분포를 정확하게 표현하고, 진앙과의 상관관계를 분석한 본 연구는 잠재적인 지진발생 위험 지역을 추출하기 위한 기초연구로써 의미가 있다. 그러나 상기와 같은 결과를 조금 더 명확하게 하기 위해서는 지진의 발생빈도가 많고 더 광역적인 지역을 대상으로 한 추가적 연구의 필요성이 있다고 사료된다.

전이학습과 딥러닝 네트워크를 활용한 고해상도 위성영상의 변화탐지 (Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network)

  • 송아람;최재완;김용일
    • 한국측량학회지
    • /
    • 제37권3호
    • /
    • pp.199-208
    • /
    • 2019
  • 운용 가능한 위성의 수가 증가하고 기술이 진보함에 따라 영상정보의 성과물이 다양해지고 많은 양의 자료가 축적되고 있다. 본 연구에서는 기구축된 영상정보를 활용하여 부족한 훈련자료의 문제를 극복하고 딥러닝(deep learning) 기법의 장점을 활용하고자 전이학습과 변화탐지 네트워크를 활용한 고해상도 위성영상의 변화탐지를 수행하였다. 본 연구에서 활용한 딥러닝 네트워크는 공간 및 분광 정보를 추출하는 합성곱 레이어(convolutional layer)와 시계열 정보를 분석하는 합성곱 장단기 메모리 레이어(convolutional long short term memory layer)로 구성되었으며, 고해상도 다중분광 영상에 최적화된 정보를 추출하기 위하여 커널(kernel)의 차원에 따른 정확도를 비교하였다. 또한, 학습된 커널 정보를 활용하기 위하여 변화탐지 네트워크의 초기 합성곱 레이어를 고해상도 항공영상인 ISPRS (International Society for Photogrammetry and Remote Sensing) 데이터셋에서 추출된 40,000개의 패치로 학습된 값으로 초기화하였다. 다시기 KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) 영상에 대한 실험 결과, 전이학습과 딥러닝 네트워크를 활용할 경우 기복 변위 및 그림자 등으로 인한 변화에 덜 민감하게 반응하며 분류 항목이 달라진 지역의 변화를 보다 효과적으로 추출할 수 있었으며, 2차원 커널보다 3차원 커널을 사용할 때 변화탐지의 정확도가 높았다. 3차원 커널은 공간 및 분광정보를 모두 고려하여 특징 맵(feature map)을 추출하기 때문에 고해상도 영상의 분류뿐만 아니라 변화탐지에도 효과적인 것을 확인하였다. 본 연구에서는 고해상도 위성영상의 변화탐지를 위한 전이학습과 딥러닝 기법의 활용 가능성을 제시하였으며, 추후 훈련된 변화탐지 네트워크를 새롭게 취득된 영상에 적용하는 연구를 수행하여 제안기법의 활용범위를 확장할 예정이다.

WebGL 블렌딩 기법을 이용한 다중 공간영상정보 중첩 가시화 (Overlay Rendering of Multiple Geo-Based Images Using WebGL Blending Technique)

  • 김광섭;이기원
    • 한국지리정보학회지
    • /
    • 제15권4호
    • /
    • pp.104-113
    • /
    • 2012
  • HTML5(Hypertext Markup Language5) 발표 이후 이를 기반으로 하는 다양한 프로그램과 서비스가 개발, 출시되고 있다. HTML5는 개인용 컴퓨터의 웹 브라우저와 모바일 단말기의 웹 브라우저의 상호 호환 구동이 가능한 기술 표준으로 학술적, 산업적 발전과 활용 가능성이 계속 증가할 것이다. 이 연구에서는 HTML5 기술 중 웹 브라우저에서 3차원 그래픽 렌더링을 지원하는 WebGL을 이용하여 DEM 자료와 공간영상정보를 다중 중첩 가시화하는 모바일 응용 프로그램을 설계하고 시험 구현하고자 하였다. 특히 공간정보 중첩처리는 블렌딩 기법을 적용하고자 하였다. WebGL 구동 프레임워크 중 CubicVR.js를 사용하였으며, 일반 사용자 환경에서 다양한 블렌딩 기법을 제공할 수 있도록 하였다. 세종시 주변 지역을 대상으로 하여 시험 구현과정에서 중첩 가시화 적용을 위하여 사용된 자료는 KOMPSAT-2 영상, ALOS PALSAR SAR 영상과 해당 지역의 고정형 대기 환경 측정소에서 얻은 격자 자료 등이다. 이러한 자료의 3차원 중첩을 위한 DEM 자료는 수치지도 자료의 등고선 정보를 이용하여 직접 생성하였다. 이번 연구를 통해 모바일 환경에서도 WebGL을 이용하여 현재 제공되지 않은 새로운 방식의 공간영상정보 콘텐츠와 서비스 시스템 도출 및 활용 가능성을 제시하고자 하였다.

관계형 데이터베이스 구성 요소의 의미 관계를 고려한 RDB to RDF 매핑 시스템 (An RDB to RDF Mapping System Considering Semantic Relations of RDB Components)

  • 성하정;김장원;이석훈;백두권
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권1호
    • /
    • pp.19-30
    • /
    • 2014
  • 시맨틱 웹의 확산을 위해 관계형 데이터베이스에 저장된 데이터를 온톨로지로 변환하는 연구가 활발히 진행 중이다. 관계형 데이터베이스에 저장된 데이터를 온톨로지로 변환하기 위한 연구들은 관계형 데이터베이스의 구성 요소와 RDF 구성 요소를 매핑하는 방식인 RDB to RDF 매핑 모델을 주로 사용한다. 하지만 지금까지 제안된 매핑 모델들은 그 표현방식이 서로 다르며, 이는 사용자의 접근성과 재사용성을 떨어트린다. 이로 인해 표준화된 매핑 언어의 필요성이 대두되었으며, W3C에서는 RDB to RDF 모델의 표준 매핑 언어로서 R2RML을 제안하였다. R2RML은 관계형 데이터베이스 스키마 정보만을 RDF로 변환하는 특징을 가진다. 이와 같은 이유로 관계형 데이터베이스의 테이블 명, 컬럼 명 사이의 관계정보에 대한 온톨로지를 추가할 수 없다. 이 논문에서는 이러한 문제를 해결하기 위해 관계형 데이터베이스 구성 요소의 의미 관계를 고려한 RDB to RDF 매핑 시스템을 제안한다. 제안 시스템은 R2RML에서 정의한 관계형 데이터베이스의 스키마 정보에 RDFS 속성 정보를 확장하여 매핑 정보를 생성한다. 이러한 매핑 정보는 관계형 데이터베이스에 저장된 데이터를 RDFS 속성 정보가 포함된 RDF로 변환시킨다. 이 논문에서는 제안 시스템을 자바 기반의 프로토타입으로 구현하며, 비교 평가를 위해 관계형 데이터베이스에 저장된 데이터를 RDF로 변환하는 실험을 수행하고 결과를 D2RQ, RDBToOnto, Morph와 비교한다. 제안 시스템은 다른 연구들에 비해 변환한 온톨로지가 풍부한 의미관계를 표현하며, 데이터 변환 시간에서 가장 우수한 성능을 보인다.

지상식 LPG 저장탱크의 외부화재에 의한 BLEVE 가능성 해석 (A Study on the Probability of BLEVE of Above-ground LP Gas Storage Tanks Exposed to External Fire)

  • 이승림;이영순
    • 한국가스학회지
    • /
    • 제7권1호
    • /
    • pp.19-23
    • /
    • 2003
  • 최근 국내에서도 정량적 위험성 평가 기법을 위험시설물에 도입하여 위험도를 관리하면서 LPG 저장탱크에 대한 사고후 피해영향평가에 대한 연구는 다각적으로 이루어지고 있으나 BLEVE(Boiling Liquid Expanding Vapor Explosion, BLEVE)의 조건 및 메커니즘 규명에 대한 연구는 별로 이루어지고 있지 않다. 따라서, 본 고에서는 상대적으로 위험성이 큰 지상식 LPG 저장탱크의 BLEVE 가능성에 대해 외국의 Pilot 탱크 시험 결과 및 BLEVE 발생을 위한 소요입열량 계산값을 이용한 연역적 계산방법을 통해 BLEVE 조건 및 가능성을 정량화하여 규명코자 하였다. 또한, 산출된 탱크의 파열압력(burst pressure)과 충전량에 의해 보정된 액 온도를 사용해서 그려진 BLEVE map을 이용하여 BLEVE 조건에서 액위($\%$)가 BLEVE에 어떤 영향을 미칠 것인가를 규명하였다. 계산결과, 탱크 plate 온도가 $600^{\circ}C$이고, 탱크내부 액온도가 $53^{\circ}C$ 일 때 액충전량은 $43.68\%$ 이상일 경우에 BLEVE의 발생이 가능하다는 결과를 얻었다. 또한, 부천 대성에너지 LPG 충전소와 동일한 사양인 15톤 프로판 탱크를 모델로 하여 BLEVE가 발생하기 위한 외부 누출 및 외부화재 조건을 PHAST(Version 6.00) 및 EFFECTS(Version 2.1) 프로그램을 이용해 계산한 결과 액상 누출시 누출상당직경은 7.2mm, 이상 누출시 누출상당직경은 17.6mm 이상일 경우에 BLEVE가 발생 가능한 최소한의 풀화재 생성조건이 되었고, 풀화재의 크기는 최소 직경 3.3m, 높이 10.4m 이상의 풀화재가 전제되어야 한다는 결과를 얻을 수 있었다.

  • PDF

디지털트윈 기반의 도시 공간정보 구축 및 관리에 관한 연구 (A Study on Construction & Management of Urban Spatial Information Based on Digital Twin)

  • 이봉주
    • 지적과 국토정보
    • /
    • 제53권1호
    • /
    • pp.47-63
    • /
    • 2023
  • 서울시는 도시에서 발생하는 다양한 문제를 해결하고 대시민 서비스 등을 위해 디지털트윈 기반의 도시 공간정보를 구축 및 운영하고 있다. 이러한 디지털트윈 도시 구현을 위한 공간정보의 안정적인 활용을 보장하기 위한 필수요소 2가지는 자료의 최신성과 품질이다. 그러나 높은 품질의 도시 공간정보에 대해 지속적인 최신성을 유지하는 것은 많은 시간과 비용이 필요하다. 이를 극복하기 위하여 효율적인 도시 공간정보 구축 기술과 구축 데이터의 운영, 관리 및 갱신 절차를 연구하였다. 우선, 최신 하이브리드센서를 활용한 포인트 클라우드 중심의 자동 3차원 건물 제작 기술을 실증하여 적용하였고, 고점밀도 항공라이다 성과를 이용하여 수준 높은 건물 모델을 자동제작이 가능함을 확인하였으며, 효율적인 데이터 관리 방안을 수립하였다. 지역별 차별화된 제작 방법의 적용, 공간 객체 고유 관리번호를 통한 도시 변화지역 탐지 지원하고, 수준별 국제표준자료 제작으로 도시 공간정보의 활용성을 강화하였다. 본 연구를 통해 디지털트윈 기반의 도시 공간정보 활성화를 고민하는 지방자치단체 및 관련 기관의 사업 추진에 좋은 선례가 될 수 있을 것으로 판단되며, 도시 단위 디지털트윈 구현의 인프라 정보로써 공간정보의 구축 및 관리에 대한 논의가 지속적으로 이루어 질 것을 기대한다.

인간형 로봇의 이동경로 생성을 위한 장애물 모양의 구분 방법 (Classification of Obstacle Shape for Generating Walking Path of Humanoid Robot)

  • 박찬수;김도익
    • 대한기계학회논문집A
    • /
    • 제37권2호
    • /
    • pp.169-176
    • /
    • 2013
  • 알려지지 않은 실내에서 인간형 로봇의 이동경로 생성을 위해서는 주변 장애물의 형태를 정확히 인식하여 이에 적합한 로봇 움직임을 만들어야 한다. 이 때, 인식된 장애물의 형태에 따라 로봇이 접촉없이 통과할 수 있고, 발과 접촉하여 통과할 수도 있으며, 회피할 수도 있다. 이를 위해 장애물이 어떤 형태를 갖고 있는지를 분류하여 로봇의 이동경로를 생성할 때 활용 가능한 장애물 인식 및 분류 방법을 제안한다. 특히 장애물 형태를 정확히 인식하기 위한 기존 알고리즘은 많은 계산량으로 실시간 활용에 어려움이 있으며, 불필요한 장애물도 함께 추출하기 때문에 연산자원의 낭비가 불가피하다. 본 연구에서는 장애물 인식의 계산량을 줄이기 위해 장애물의 영역을 분류한 후 정확한 형상이 필요한 장애물에 한해 크기 및 형태를 추출하도록 알고리즘의 적용 범위를 제한하여 계산량을 줄이는 방법을 제안한다.