• 제목/요약/키워드: 3D manufacturing

검색결과 1,978건 처리시간 0.028초

3D 시뮬레이션을 활용한 렌즈모듈 자동화조립시스템 개발 (Developing Automatic Lens Module Assembly System Using 3D Simulation)

  • 문덕희;이준석;백승근;장병림;김영규
    • 한국시뮬레이션학회논문지
    • /
    • 제16권2호
    • /
    • pp.65-74
    • /
    • 2007
  • 가상생산기술은 신제품의 개발, 새로운 장비 개발 및 새로운 제조시스템 개발에 유용한 도구이며, 특히 3D 시뮬레이션 기술은 가상생산의 핵심기술이다. 3D 시뮬레이션 기술은 기계적 시뮬레이션 기술과 이산사건 시뮬레이션 기술로 구분할 수 있다. 본 논문에서는 휴대폰 카메라에 장착되는 렌즈모듈 조립을 생산하는 국내 회사의 사례를 소개한다. 이 회사에서는 렌즈모듈 조립공정을 현재 수작업으로 하고 있는데 자동화시스템을 개발하기로 결정하였으며 이를 위해 3D 시뮬레이션 기술을 도입하기로 하였다. 3D 시뮬레이션 기술은 시스템 개념설계단계에서부터 적용이 되었는데, 단위 장비 개발을 위해서는 $CATIA^{(R)}$$IGRIP^{(R)}$이 활용되었으며, 시스템 설계를 위해서는 이산사건 시뮬레이션 도구인 $QUEST^{(R)}$가 활용되었다. 논문의 목적은 새로운 자동화 설비의 기술적. 경제적 타당성을 검증하는 것이다. 개발결과 takt time 이 기존의 수작업에 비해 4분의 1 수준으로 감소되었으며, 이에 따른 작업자 인원도 대폭 감소되었다.

  • PDF

3D Printer로 제작된 인공뼈 구조에 대한 기계적 특성에 관한 연구 (A Study on the Mechanical Properties of Artificial Bone Structure Fabricated Using a 3D Printer)

  • 허영준;최성대
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.35-41
    • /
    • 2020
  • The structure of the femur bone was analyzed. Moreover, the mechanical strength of the bone was determined by considering two parameters, namely, the outer wall thickness and inner filling density to realize the 3D printing of a cortical bone and spongy bone by using a fused deposition modeling type 3D printer and ABS material. A basic experiment was conducted to evaluate the variation trend in the mechanical strength of the test specimens with the change in the parameters. Based on the results, the parameters corresponding to the highest mechanical strength were selected and applied to the artificial bone, and the mechanical strength of the artificial bones was examined under a load. Moreover, we proposed an approximation method for the 3D printing parameters to enable the comparison of the actual bones and artificial bones in terms of the strength and weight.

ARENA를 활용한 3D 프린팅 기술 기반 거푸집 공사의 생산성 분석 시뮬레이션 모델 개발 (Development of Productivity Analysis Simulation Model for Formwork Based on 3D Printing Technology Using ARENA)

  • 안희재;이창수;김하림;김태훈;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.188-189
    • /
    • 2021
  • The technology of manufacturing freeform molds with S-LOM based 3D printer has advantages in the production period and the curvature range. However, there is no any support tool about productivity analysis of S-LOM technology because S-LOM technology is early-stage technology. There can be problems about increase of construction time and cost without any decision support tool like productivity analysis models etc. Therefore, in this study, the productivity analysis simulation model for freeform formwork based on S-LOM technology was developed using ARENA software. The process and logic of manufacturing freeform molds can be easily visualized in this model. Futhermore, the resource like labor, equipment and material can be easily optimized with this model. As a result, it can contribute to preventing the increase of construction time and cost in formwork with further productivity analysis.

  • PDF

공구경로 변화에 따른 고속 볼 엔드밀 가공에서 경사면의 특성(I) (Characteristics of Inclined Plane Constructed by High speed Ball End Milling according to the Variation of Cutting Direction(I))

  • 강명창
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.137-143
    • /
    • 1999
  • The study of the high speed machining of inclined plane using ball end mill is performed. The use of ball end mill is rapidly growing in die and mold manufacturing. The cutting characteristics, such as cuttin g force, surface roughness and surface profile, are varied according to the variation of cutting directions. Free surface is cut using ball end mill, the surface profile is greatly varied depending upon the cutting direction. So this study will deal with the characteristics of cutting such as cutting efficiency according to the inclined plane of the workpiece, the cutting force according to tool path, surface profile and the roughness of surface. The optimal cutting direction to be applied the cutting for 3-D sculptured surfaces can be show through the results of this study.

  • PDF

접촉식 3차원 형상스캐너를 이용한 터빈 블레이드의 형상 정밀도 측정 (Profile Error Measurement of a Turbine Blade Using a Contact Type 3D-Scanner)

  • 강병수;강재관
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.76-81
    • /
    • 2006
  • In this paper, profile error measurement method of a turbine blade using 3D-scanner is developed. The method begins with scanning the upper and lower sides of the blade on which three small balls are attached, and constructs a solid measurement model by registering the two scanned surfaces. Airfoils are derived from the model at each interval by intersecting it with a plane, and arranged with design airfoils. The $2^2$ factorial design search method is engaged in arranging the two airfoils, from which the main blade parameters including the edge radius are computed. The developed measurement technique is applied to practical blade manufacturing and validates its effectiveness.

1축 로드셀 배열을 사용한 픽 커터의 3축 절삭력 측정방법 (Method for measuring 3-axis cutting force of a pick cutter using the single-axis load cell array)

  • 강훈;장진석;박진영;조정우;정명식;이재욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권9호
    • /
    • pp.749-755
    • /
    • 2016
  • 본 연구에서는 고가의 3-D 로드셀을 대체하기 위해 1축 압축 로드셀 배열을 사용한 새로운 픽 커터 3축 절삭력 측정방법을 제안하였다. 제안한 절삭력 측정방법은 4개의 1축 압축 로드셀과 숄더 볼트를 통해 기계적 구속을 만들어 3축 절삭력을 측정할 수 있다. 유한요소해석을 통해 제안한 새로운 절삭력 측정방법을 타당성을 확인하였으며, 최종적으로 실제 선형 암반절삭 시험을 통해 제안한 새로운 측정방법의 3축 힘 측정 정확도를 확인하였다. 시험 결과 새로운 절삭력 측정방법은 상대오차가 약 6% 이내이므로, 기존의 3-D 로드셀을 대체할 수 있음을 확인하였다. 더불어, 기존 고가의 3-D 로드셀 대비 약 20-30%의 비용만으로 구축 가능하므로 절삭력 측정에 사용되는 비용을 크게 줄일 수 있다.

이광자 광중합 공정을 이용한 3차원 미세구조물 제작기술 동향 (Recent Progress in the Nanoscale Additive Layer Manufacturing Process Using Two-Photon Polymerization for Fabrication of 3D Polymeric, Ceramic, and Metallic Structures)

  • 하철우;임태우;손용;박석희;박상후;양동열
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.265-270
    • /
    • 2016
  • Recently, many studies have been conducted on the nano-scale fabrication technology using twophoton- absorbed polymerization induced by a femtosecond laser. The nano-stereolithography process has many advantages as a technique for direct fabrication of true three-dimensional shapes in the range over several microns with sub-100 nm resolution, which might be difficult to obtain by using general nano/microscale fabrication technologies. Therefore, two-photon induced nano-stereolithography has been recently recognized as a promising candidate technology to fabricate arbitrary 3D structures with sub-100 nm resolution. Many research works for fabricating novel 3D nano/micro devices using the two-photon nano-stereolithography process, which can be utilized in the NT/BT/IT fields, are rapidly advancing.

난반사 표면의 3D 스캐닝을 위한 정전분말코팅 연구 (A Study on Electrostatic Powder Coating for 3D Scanning of Diffused Surfaces)

  • 맹희영;이명상
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.56-62
    • /
    • 2015
  • Using an optical 3D scanning device to collect data from a diffused reflection surface is very difficult. To solve this problem, there are many applications including a spray-type developer and silicon molds. However, using a developer can cause chemical reactions between objects and particles of the developer and uneven surfaces on the object. To overcome these problems, we suggest an electrostatic powder coating method for even coating of particles onto surfaces for collecting 3D shape data. We have developed an automatic, electrostatic powder-coating machine and performed three different experiments to compare this system with a laser interferometer and a T-scan 3D scanner. As a result, we could ascertain the various characteristics of this new method, including good sensitivity for the various surface states of the bare surface, developer, and electrostatic powder coating. Finally, we verified the outstanding scanning performance and were able to demonstrate that this method achieves quality than traditional methods.

구면좌표계식 기구를 이용한 3D 스캐닝 장치의 정밀도 평가 (An Evaluation on the Accuracy of a 3D Scanning Device Using Spherical Coordinate Mechanisms)

  • 맹희영;박상욱
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2015
  • To improve the efficiency of a reverse engineering process, many researches have recently tried to develop efficient, automatic 3D scanning devices. A new automatic 3D scanning device using a spherical coordinate system mechanism is introduced in this study. This device incorporates a guide motion along the spherical coordinate to compound each 3D data point automatically. The experiments correlating the system assembling tolerance with the form accuracy were conducted to verify the efficiency of the system for the scanning of an object, including complex shapes and manifold sections. In addition, the required time and system accuracy, taken during the scanning process of complicated artifact models, were investigated. Further, based on these empirical results, it was ascertained that the superior productivity of this new device offers a more precise and efficient scan when compared to conventional methodologies.

소산입자동역학과 분자동역학을 이용한 3D 프린터용 PEEK 분말에 대한 온도에 따른 미시적 구조변화에 대한 연구 (Investigation of Temperature-Dependent Microscopic Morphological Variation of PEEK Powder for a 3D Printer using Dissipative Particle and Molecular Dynamics Simulations)

  • 김남원;이태일
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.117-122
    • /
    • 2018
  • 3D printing technology and its applications have grown rapidly in academia and industry. We consider a 3D printing system designed for the selective laser sintering (SLS) method, which is one of the powder bed fusion (PBF) techniques to build up the final product by layering sintered powder slices. Thermal distortion of printing products is a critical challenge in 3D printing. This study investigates temperature-dependent conformational behaviors of 3D printed samples of sintered poly-ether-ether-ketone (PEEK) powders using molecular dynamics simulations. The wear and chemical resistance properties of PEEK are understood, as it is a well-known biocompatible material used for implants. However, studies on physical phenomena at nanoscale in PEEK are rarely published in public. We simulate dissipative particle dynamics to elucidate how a cavity regime forms in PEEK at different system temperatures. We demonstrate how PEEK structures deform subject to the system temperature distribution.