• Title/Summary/Keyword: 3D manufacturing

Search Result 1,975, Processing Time 0.035 seconds

A Study on Extraction and its Storage method of Topological Information from Common 2-D CAD Using The Boundary-Representation Method (범용 2D MCAD 상에서 경계표현법을 이용한 위상 정보 추출 및 그 저장방식에 관한 연구)

  • Hong, Sang-Hoon;Han, Seong-Young;Kim, Yong-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.25-34
    • /
    • 1999
  • In spite of the advance of 3D solid modeling technology, there are some distinct areas where 2D CAD S/W are still dominant, and more competent comparing with 3D CAD S/W. For example, in the manufacturing of 2D-shaped electrical parts, most related manufacturing tools have 2D geometric features by nature, and 3D solid models applied to these parts have substantial overheads. Nevertheless, most 2D CAD S/W have no topological inquiry services because they have no such information on their geometrical database inherently. Thus, it is needed to extract such information from 2D CAD database for developing more advanced application such as automated drafting/design S/W. In this paper, the extraction of topological information from 2D CAD has been performed in general way using concept of B-rep. A general extraction algorithm, data structure and meta file format for 2D topological object have been developed and successfully applied to the development of the automated lead frame die design system in Samsung Aerospace. it is also possible to provide a flexible, powerful topology-oriented functionality on any common 2D CAD S/W.

  • PDF

Comparison of Mechanical Properties and Form Accuracy in FDM 3D Printing Based on Building Conditions (FDM 방식 3D 프린팅에서 제작 조건에 따른 기계적물성치와 형상정밀도의 실험적 비교)

  • Kim, Gi-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.52-59
    • /
    • 2021
  • In this study, we experimentally evaluated the mechanical properties and geometric form accuracy in FDM 3D printing processes based on the printing direction, building direction, and layer thickness. The specimen test results showed that the tensile strength increased by over 33% in the printing direction compared to the direction perpendicular to printing and the tensile strength becomes larger as the layer thickness decreased. Furthermore, the tensile and impact strengths in the building direction were significantly reduced due to the difference in the interlayer joining and bonding strengths of the fused material. Additionally, shrinkage of the material due to phase change induced curl distortion especially in thin and long 3D-printed products, which increased as the layer thickness increased.

Internal evaluation of provisional restorations according to the dental CAD/CAM manufacturing method : Three-dimensional superimpositional analysis (치과 CAD/CAM 가공방식에 따른 임시보철물의 내면 적합도 : 3차원 중첩 분석)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Purpose: The purpose of the present study was to compare the internal fit of two different temporary restorations fabricated by dental CAD/CAM system and to evaluate clinical effectiveness. Methods: Composite resin tooth of the maxillary first molar was prepared as occlusal reduction(2.0mm), axial reduction(1mm offset), vertical angle(6 degree) and chamfer margin for a temporary crown and duplicated epoxy die was fabricated. The epoxy dies were used to fabricate provisional restorations by CAD/CAM milling technique or 3D-printing technique. The inner data from all crowns were superimposed on the master die file in the 'best-fit alignment' method using 3D analysis software. Statistical analysis was performed using a Wilcoxon's rank sum test for differences between groups. Results: It showed that the internal RMS(Root Mean Square) values of the additive group were significantly larger than those of other group. No significant differences in internal discrepancies were observed in the temporary crowns among the 2 groups with different manufacturing method. Conclusion: All the groups had the internal fit within the clinical acceptable range (< $50{\mu}m$). The continuous research in the future to be applied clinically for the adaptation of additive manufacturing technique are needed.

Application of Reverse Engineering System for Improvement of Press Forming Process (프레스 성형 공정 개선을 위한 역설계 시스템의 적용)

  • 김수용;김민주;이승수;전언찬;김순경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.412-419
    • /
    • 2003
  • The most product is manufactured by mould in usual life. From drawing to manufacturing is to be automatically. But inspection is handwork usually. An alternative idea of this problem is reverse engineering. In this study, press forming is measured by 3D non-contact coordinate measuring machine and problem will be analyzed by comparing with 3D data Through the study, it will achieve improvement of press mould process.

  • PDF

Manufacturing Information Calculation System for Production Automation of 3-dimensional Template Used to Evaluate Shell Plate Completeness (선체 곡판 완성도 평가용 3차원 곡형의 제작 자동화를 위한 생산 정보 산출 시스템)

  • Ryu, Cheolho;Son, Seunghyeok;Shen, Huiqiang;Kim, Youngmin;Kim, Byeongseop;Jung, ChangHwan;Hwang, InHyuck;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.136-143
    • /
    • 2018
  • 3-D templates are produced to evaluate completeness of the shell plates during the forming process, which is an essential step for the ship production. They are mostly produced in advance during the detail/production design stage, but occasionally they are requested by the shell plate forming department, because it is impossible to predict accurately the necessities of them at the design stage. This results in a huge loss of man-hour and a bottleneck. In order to resolve this issue while reducing the dependence on other department, the process of manufacturing the 3-D templates needs to be automated. Therefore, this study proposes an automatic system that calculates the manufacturing information of the 3-D templates with only geometric information of the shell plates. The system considers the thickness and the cutting method of the parts of the 3-D templates and some options are provided to reflect the intention of the worker.

Effects and Application Cases of Injection Molds by using DED type Additive Manufacturing Process (DED방식의 적층가공을 통한 금형으로의 응용사례 및 효과)

  • Kim, Woosung;Hong, Myungpyo;Kim, Yanggon;Suh, Chang Hee;Lee, Jongwon;Lee, Sunghee;Sung, Ji Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.10-14
    • /
    • 2014
  • Laser aided Direct Metal Tooling(DMT) process is a kind of Additive Manufacturing processes (or 3D-Printing processes), which is developed for using various commercial steel powders such as P20, P21, SUS420, H13, D2 and other non-ferrous metal powders, aluminum alloys, titanium alloys, copper alloys and so on. The DMT process is a versatile process which can be applied to various fields like the mold industry, the medical industry, and the defense industry. Among of them, the application of DMT process to the mold industry is one of the most attractive and practical applications since the conformal cooling channel core of injection molds can be fabricated at the slightly expensive cost by using the hybrid fabrication method of DMT technology compared to the part fabricated with the machining technology. The main objectives of this study are to provide various characteristics of the parts made by DMT process compared to the same parts machined from bulk materials and prove the performance of the injection mold equipped with the conformal cooling channel core which is fabricated by the hybrid method of DMT process.

A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP (RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구)

  • Kim, Tae-Hwa;Moon, Sung-Ho;Kang, Seong-Ho;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

Quantitative Analysis of 3D Printing Layered Shape according to the Flatness of Construction Surface (시공표면평탄에 따른 3D 프린팅 적층형상 정량분석)

  • Park, Jin Su;Kim, Kyung Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.257-261
    • /
    • 2022
  • Additive manufacturing (AM, also known as 3D printing) applied to the construction industry is implemented and verified for various effects since advantages such as high design freedom, improving worker safety, and predictable construction period. However, due to the low maturity compared to the existing technology, studies are underway to solve new problems that occur in the overall of AM technology. In this paper, we confirm the effect of low construction surface flatness on the stacked features in the process of on-site AM construction. In particular, unstable AM features are determined through quantitative analysis by laser scanning, and a construction strategy is proposed for the surface flattening.

Concentration of Heavy Metals in Air and Soil around the D Iron-manufacturing Company Area in Chungnam, Korea (충남지역 D제철소 주변의 대기 및 토양의 중금속 농도, 제철소주변지역의 중금속분포에 관한 연구)

  • Yom, Yoon-Ki;Ji, Suk-Gi;Li, Seung-Hun;Cho, Tea-Jin;Jeon, Hye-Ii;Jang, Bong-Ki;Son, Bu-Soon
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • The analyzed results of the heavy metal concentration of air and soil at the D iron-manufacturing company area were as follows; The concentration of $PM_{2.5}$ in the case area exceeded the air standard level in 3 seasons except summer. The $PM_{10}$ level was similar to the standard level, which was similar to the standard level, which was $50{\mu}g/m^3$. The Pb concentration of air in the case area was $0.13{\mu}g/m^3$, which was slightly higher than $0.11{\mu}g/m^3$ in the control area. The concentration of Cd and Cr were higher in the control area. The heavy metal (Pb) concentration of soil in the case area was $10.7{\mu}g/m^3$, which was higher than that of the control area. For these results, it is necessary for the D iron-manufacturing company area to consider a counter plan for dusts and are duction plan for the heavy metal (Pb).