• Title/Summary/Keyword: 3D landmark

Search Result 67, Processing Time 0.037 seconds

VRML image overlay method for Robot's Self-Localization (VRML 영상오버레이기법을 이용한 로봇의 Self-Localization)

  • Sohn, Eun-Ho;Kwon, Bang-Hyun;Kim, Young-Chul;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.318-320
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localitzation technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

  • PDF

A Study on Optimal Location Selection and Analytic Method of Landmark Element in terms of Visual Perception (시각적 측면에서 랜드마크 요소의 최적입지선정 분석방법에 관한 연구)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6360-6367
    • /
    • 2015
  • The location selection of the element that should guarantee easy visual perception, like the landmark, is the a topic that appears much in the design process. Recently, a graph analysis technique using computers has been applied in order to evaluate the visibility of the visual element, but the analytic frame is flat and the setting of the visual pont and the matrix are fixed so there were great limitations in obtaining the results of the practical analysis. Thus, this study presented Nondirectional Multi-Dimensional Calculation (MDVC-N), an analytic methodology available for the analysis of the dynamic visual point in the 3D environment. It thus attempted to establish the analytic application using the 3D computer graphics technology and designed a script structure to set the visual point and the matrix. In addition to that, this study tried to verify the analytic methodology by applying the complex land as an example model, where buildings in various heights of terrains with a high-differences are located, verifying the same analytic methodology. It thus tried to identify the visual characteristics of each alternative location. The following results were gained from the study. 1) The visibility can be measured quantitatively trough the application of the 6-alternatives. 2) Using the 3dimensional graph, intuitive analysis was possible. 3) It attempted to improve the analytic applicability by calculating the results corrected as a variable behavior from the local integration variable of the space syntax.

SKELETAL PATTERN ANALYSIS OF FACIAL ASYMMETRY PATIENT USING THREE DIMENSIONAL COMPUTED TOMOGRAPHY (삼차원 전산화 단층촬영술을 이용한 안모 비대칭환자의 골격 분석)

  • Choi, Jung-Goo;Min, Seung-Ki;Oh, Seung-Hwan;Kwon, Kyung-Hwan;Choi, Moon-Ki;Lee, June;Oh, Se-Ri;Yu, Dae-Hyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.622-627
    • /
    • 2008
  • In orthognathic surgery, precise analysis and diagnosis are essential for successful results. In facial asymmetric patient, traditional 2D image analysis has been used by lateral and P-A Cephalometric view, Skull PA, Panorama, Submentovertex view etc. But clinicians sometimes misdiagnose because they cannot find exact landmark due to superimposition, moreover image can be magnified and distorted by projection technique or patient's skull position, when using these analysis and method. For overcome these defects, analysis by using of 3D CT has been introduced. In this way we can analysis precisely by getting the exact image free of artifact and finding exact landmark with no interruption of superimposition. So we want to review of relationship between various skeletal landmarks of mandible or cranial base and facial asymmetry by predictable analysis using 3D CT. We select the cases of the patients who visited our department for correction of facial asymmetry during 2003-2007 and who were taken image of 3D CT for diagnosis. 3D CT images were reconstructed to 3D image by using V-Work program (Cybermed Inc., Seoul, Korea). And we analysis the relationship between facial asymmetry and various affecting factor of skeletal pattern. The mandibular ramus hight difference between right and left was most affecting factor that express facial asymmetry. And in this research, there was no relationship between cranial base and facial asymmetry. The angulation between facial midline and mandibular ramus divergency has significant relationship with facial asymmetry

Accuracy of artificial intelligence-assisted landmark identification in serial lateral cephalograms of Class III patients who underwent orthodontic treatment and two-jaw orthognathic surgery

  • Hong, Mihee;Kim, Inhwan;Cho, Jin-Hyoung;Kang, Kyung-Hwa;Kim, Minji;Kim, Su-Jung;Kim, Yoon-Ji;Sung, Sang-Jin;Kim, Young Ho;Lim, Sung-Hoon;Kim, Namkug;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.287-297
    • /
    • 2022
  • Objective: To investigate the pattern of accuracy change in artificial intelligence-assisted landmark identification (LI) using a convolutional neural network (CNN) algorithm in serial lateral cephalograms (Lat-cephs) of Class III (C-III) patients who underwent two-jaw orthognathic surgery. Methods: A total of 3,188 Lat-cephs of C-III patients were allocated into the training and validation sets (3,004 Lat-cephs of 751 patients) and test set (184 Lat-cephs of 46 patients; subdivided into the genioplasty and non-genioplasty groups, n = 23 per group) for LI. Each C-III patient in the test set had four Lat-cephs: initial (T0), pre-surgery (T1, presence of orthodontic brackets [OBs]), post-surgery (T2, presence of OBs and surgical plates and screws [S-PS]), and debonding (T3, presence of S-PS and fixed retainers [FR]). After mean errors of 20 landmarks between human gold standard and the CNN model were calculated, statistical analysis was performed. Results: The total mean error was 1.17 mm without significant difference among the four time-points (T0, 1.20 mm; T1, 1.14 mm; T2, 1.18 mm; T3, 1.15 mm). In comparison of two time-points ([T0, T1] vs. [T2, T3]), ANS, A point, and B point showed an increase in error (p < 0.01, 0.05, 0.01, respectively), while Mx6D and Md6D showeda decrease in error (all p < 0.01). No difference in errors existed at B point, Pogonion, Menton, Md1C, and Md1R between the genioplasty and non-genioplasty groups. Conclusions: The CNN model can be used for LI in serial Lat-cephs despite the presence of OB, S-PS, FR, genioplasty, and bone remodeling.

Improved Anatomical Landmark Detection Using Attention Modules and Geometric Data Augmentation in X-ray Images (어텐션 모듈과 기하학적 데이터 증강을 통한 X-ray 영상 내 해부학적 랜드마크 검출 성능 향상)

  • Lee, Hyo-Jeong;Ma, Se-Rie;Choi, Jang-Hwan
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.55-65
    • /
    • 2022
  • Recently, deep learning-based automated systems for identifying and detecting landmarks have been proposed. In order to train such a deep learning-based model without overfitting, a large amount of image and labeling data is required. Conventionally, an experienced reader manually identifies and labels landmarks in a patient's image. However, such measurement is not only expensive, but also has poor reproducibility, so the need for an automated labeling method has been raised. In addition, in the X-ray image, since various human tissues on the path through which the photons pass are displayed, it is difficult to identify the landmark compared to a general natural image or a 3D image modality image. In this study, we propose a geometric data augmentation technique that enables the generation of a large amount of labeling data in X-ray images. In addition, the optimal attention mechanism for landmark detection was presented through the implementation and application of various attention techniques to improve the detection performance of 16 major landmarks in the skull. Finally, among the major cranial landmarks, markers that ensure stable detection are derived, and these markers are expected to have high clinical application potential.

A 3D Face Reconstruction and Tracking Method using the Estimated Depth Information (얼굴 깊이 추정을 이용한 3차원 얼굴 생성 및 추적 방법)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.21-28
    • /
    • 2011
  • A 3D face shape derived from 2D images may be useful in many applications, such as face recognition, face synthesis and human computer interaction. To do this, we develop a fast 3D Active Appearance Model (3D-AAM) method using depth estimation. The training images include specific 3D face poses which are extremely different from one another. The landmark's depth information of landmarks is estimated from the training image sequence by using the approximated Jacobian matrix. It is added at the test phase to deal with the 3D pose variations of the input face. Our experimental results show that the proposed method can efficiently fit the face shape, including the variations of facial expressions and 3D pose variations, better than the typical AAM, and can estimate accurate 3D face shape from images.

A New Head Pose Estimation Method based on Boosted 3-D PCA (새로운 Boosted 3-D PCA 기반 Head Pose Estimation 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.105-109
    • /
    • 2021
  • In this paper, we evaluate Boosted 3-D PCA as a Dataset and evaluate its performance. After that, we will analyze the network features and performance. In this paper, the learning was performed using the 300W-LP data set using the same learning method as Boosted 3-D PCA, and the evaluation was evaluated using the AFLW2000 data set. The results show that the performance is similar to that of the Boosted 3-D PCA paper. This performance result can be learned using the data set of face images freely than the existing Landmark-to-Pose method, so that the poses can be accurately predicted in real-world situations. Since the optimization of the set of key points is not independent, we confirmed the manual that can reduce the computation time. This analysis is expected to be a very important resource for improving the performance of network boosted 3-D PCA or applying it to various application domains.

Vision-based Navigation for VTOL Unmanned Aerial Vehicle Landing (수직이착륙 무인항공기 자동 착륙을 위한 영상기반 항법)

  • Lee, Sang-Hoon;Song, Jin-Mo;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2015
  • Pose estimation is an important operation for many vision tasks. This paper presents a method of estimating the camera pose, using a known landmark for the purpose of autonomous vertical takeoff and landing(VTOL) unmanned aerial vehicle(UAV) landing. The proposed method uses a distinctive methodology to solve the pose estimation problem. We propose to combine extrinsic parameters from known and unknown 3-D(three-dimensional) feature points, and inertial estimation of camera 6-DOF(Degree Of Freedom) into one linear inhomogeneous equation. This allows us to use singular value decomposition(SVD) to neatly solve the given optimization problem. We present experimental results that demonstrate the ability of the proposed method to estimate camera 6DOF with the ease of implementation.

Automatic Hand Measurement System from 2D Hand Image for Customized Glove Production

  • Han, Hyun Sook;Park, Chang Kyu
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.468-476
    • /
    • 2016
  • Recent advancements in optics technology enable us to realize fast scans of hands using two-dimensional (2D) image scanners. In this paper, we propose an automatic hand measurement system using 2D image scanners for customized glove production. To develop the automatic hand measurement system, firstly hand scanning devices has been constructed. The devices are designed to block external lights and have user interface to guide hand posture during scanning. After hands are scanned, hand contour is extracted using binary image processing, noise elimination and outline tracing. And then, 19 hand landmarks are automatically detected using an automatic hand landmark detection algorithm based on geometric feature analysis. Then, automatic hand measurement program is executed based on the automatically extracted landmarks and measurement algorithms. The automatic hand measurement algorithms have been developed for 18 hand measurements required for custom-made glove pattern making. The program has been coded using the C++ programming language. We have implemented experiments to demonstrate the validity of the system using 11 subjects (8 males, 3 females) by comparing automatic 2D scan measurements with manual measurements. The result shows that the automatic 2D scan measurements are acceptable in the customized glove making industry. Our evaluation results confirm its effectiveness and robustness.

Patellar Inferior Pole: New Landmark for the Anteromedial Instrument Portal for Arthroscopic Surgery of the Medial Meniscus Posterior Horn (슬개골 하극: 내측 반월상 연골판 후각부에 대한 관절경 수술을 위한 전내측 기구 삽입구의 새로운 표식)

  • Kim, Young-Mo;Hwang, Deuk-Soo;Lee, June-Kyu;Shin, Hyun-Dae;Kang, Tae-Hwan;Kim, Dong-Kyu;Kim, Pil-Sung
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.7 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • Purpose: We prospectively evaluated the clinical usefulness of the patellar inferior pole (PIP) as a landmark of the anteromedial (AM) portal for the arthroscopic surgery of the medial mensiscus posterior horn (MMPH). Materials and Methods: Group 1 (50 normal left knees of adults), Group 2 (10 normal knees under anesthesia), and Group 3 (50 consecutive knees undergoing elective arthroscopic surgery for relatively simple intraarticular pathologies, or diagnostic arthroscopy) were included. In Group 1 and 2, the true lateral (A) and valgus stress lateral radiographs (B) on $30^{\circ}$ flexion were obtained, and the lines (AM portal line) passing through the PIP and distal-most medial femoral condyle (MFC) were drawn under the condition without considering the thickness of articular cartilage of MFC (1, 2-A, B group), and considering it as 2.5mm on B (1, 2-C group). Then, we investigated the meeting point of the AM portal line with medial tibial plateau (C-D percentage), and measured the distance between the PIP and the anterior joint line (E-length), and medial tibial-femoral joint space (F-length). In Group 3, the AM portal was made at the PIP level and clinical usefulness of the approach to the MMPH and body of the lateral meniscus (LM) was analyzed. Results: The average C-D percentage came out as 85.8, 101.3, 69.1% for each Group 1-A, B, C, and 102.4, 144.6, 116.8% for each Group 2-A, B, C. Measured E-length was an average of 15.1 (Group 1-A), 15.5 (Group 1-B, C), 13.1 (Group 2-A), and 12.9 mm (Group 2-B, C) and the change by valgus stress had no statistical significance. The F-length increased about 1.2 (Group 1) and 3.6 mm (Group 2) when valgus stress was applied, which had statistical significance (p<0.001, p<0.001). In Group 3, 49, 48 knees were classified as good for the MMPH, and the body of LM in aspect of the clinical usefulness of AM portal made on the PIP level. Conclusion: We identified the clinical usefulness of the PIP as a skin landmark of AM portal for the arthroscopic surgery of the MMPH.

  • PDF