• Title/Summary/Keyword: 3D integral imaging

Search Result 159, Processing Time 0.034 seconds

Design and Implementation of an Approximate Surface Lens Array System based on OpenCL (OpenCL 기반 근사곡면 렌즈어레이 시스템의 설계 및 구현)

  • Kim, Do-Hyeong;Song, Min-Ho;Jung, Ji-Sung;Kwon, Ki-Chul;Kim, Nam;Kim, Kyung-Ah;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.1-9
    • /
    • 2014
  • Generally, integral image used for autostereoscopic 3d display is generated for flat lens array, but flat lens array cannot provide a wide range of view for generated integral image because of narrow range of view. To make up for this flat lens array's weak point, curved lens array has been proposed, and due to technical and cost problem, approximate surface lens array composed of several flat lens array is used instead of ideal curved lens array. In this paper, we constructed an approximate surface lens array arranged for $20{\times}8$ square flat lens in 100mm radius sphere, and we could get about twice angle of view compared to flat lens array. Specially, unlike existing researches which manually generate integral image, we propose an OpenCL GPU parallel process algorithm for generating real-time integral image. As a result, we could get 12-20 frame/sec speed about various 3D volume data from $15{\times}15$ approximate surface lens array.

Neighboring Elemental Image Exemplar Based Inpainting for Computational Integral Imaging Reconstruction with Partial Occlusion

  • Ko, Bumseok;Lee, Byung-Gook;Lee, Sukho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.390-396
    • /
    • 2015
  • We propose a partial occlusion removal method for computational integral imaging reconstruction (CIIR) based on the usage of the exemplar based inpainting technique. The proposed method is an improved version of the original linear inpainting based CIIR (LI-CIIR), which uses the inpainting technique to fill in the data missing region. The LI-CIIR shows good results for images which contain objects with smooth surfaces. However, if the object has a textured surface, the result of the LI-CIIR deteriorates, since the linear inpainting cannot recover the textured data in the data missing region well. In this work, we utilize the exemplar based inpainting to fill in the textured data in the data missing region. We call the proposed method the neighboring elemental image exemplar based inpainting (NEI-exemplar inpainting) method, since it uses sources from neighboring elemental images to fill in the data missing region. Furthermore, we also propose an automatic occluding region extraction method based on the use of the mutual constraint using depth estimation (MC-DE) and the level set based bimodal segmentation. Experimental results show the validity of the proposed system.

Resolution enhanced integral imaging using super-resolution image reconstruction algorithm (초해상도 영상복원을 이용한 집적영상의 해상도 향상)

  • Hong, Kee-Hoon;Park, Jae-Hyeung;Lee, Byoung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1124-1132
    • /
    • 2009
  • We proposed a new method to improve the resolution of elemental image set in the integral imaging system using super-resolution image reconstruction method. Adjacent elemental images have same image region which is projected from the common area of object. These projected images in the elemental image can be used for low resolution images of super-resolution method. Two methods for resolution improvement of elemental image set using super-resolution method are proposed. One is super-resolution among the elemental image sets and the other is among the elemental images. Simulation results are compared with resolution improved elemental image set using interpolated method.

Acceleration Method for Integral Imaging Generation of Volume Data based on CUDA (CUDA를 기반한 볼륨데이터의 집적영상 생성을 위한 고속화 기법)

  • Park, Chan;Jeong, Ji-Seong;Park, Jae-Hyeung;Kwon, Ki-Chul;Kim, Nam;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.9-17
    • /
    • 2011
  • Recently, with the advent of stereoscopic 3D TV, the activation of 3D stereoscopic content is expected. Research on 3D auto stereoscopic display has been carried out to relieve discomfort of 3D stereoscopic display. In this research, it is necessary to generate the elemental image from a lens array. As the number of lens in a lens array is increased, it takes a lot of time to generate the elemental image, and it will take more time for a large volume data. In order to improve the problem, in this paper, we propose a method to generate the elemental image by using OpenCL based on CUDA. We perform our proposed method on PC environment with one of Tesla C1060, Geforce 9800GT and Quadro FX 3800 graphics cards. Experimental results show that the proposed method can obtain almost 20 times better performance than recent research result[11].

Robust and Secure InIm-based 3D Watermarking Scheme using Cellular Automata Transform (셀룰러 오토마타 변환을 이용한 집적영상 기반의 강인하고 안전한 3D 워터마킹 방법)

  • Piao, Yong-Ri;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1767-1778
    • /
    • 2009
  • A robust and secure InIm(Integral imaging)-based 3D watermarking scheme using cellular automata transform (CAI) is proposed. In the InIm-based 3D watermarking scheme, the elemental image array (EIA) watermark for the target watermark which has to be detected, is synthesized from the computational pickup process of InIm and embedded in a cover image. The EIA watermark can provide a robust reconstruction of the target watermark However, the 3D property of the EIA watermark causes a weakening of the security. To overcome this problem, the proposed method uses the CAT domain to embed and extract the EIA watermark in the cover image. The use of CAT significantly improves the security for our watermarking algorithm using a single secure key only. Experiments are presented to show that the proposed scheme shows robust and secure performances against various attacks.

Optical implementation of unidirectional integral imaging based on pinhole model (핀홀 모델 기반의 1차원 집적 영상 기법의 광학적 구현)

  • Shin, Dong-Hak;Kim, Nam-Woo;Lee, Joon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.337-343
    • /
    • 2007
  • Since three-dimensional (3D) images reconstructed in interval imaging technique are related to the resolution of elemental images, there has been a problem that ray information of elemental images increases largely in order to obtain high-resolution 3D images. In this paper, to overcome this problem, a new unidirectional integral imaging based on pinhole model is proposed. Proposed method provides a new type of unidirectional elemental images, which are simply obtained by magnifying single horizontal pixel line of each elemental image to the vertical size of lenslet using ray analysis based on pinhole model and used to display 3D images. In proposed method, reduction effect of the ray information of elemental images can be obtained by scarifying vortical parallax. Feasibility of the proposed scheme is experimentally demonstrated and its results are presented.

Computational Integral Imaging with Enhanced Depth Sensitivity

  • Baasantseren, Ganbat;Park, Jae-Hyeung;Kim, Nam;Kwon, Ki-Chul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • A novel computational integral imaging technique with enhanced depth sensitivity is proposed. For each lateral position at a given depth plane, the dissimilarity between corresponding pixels of the elemental images is measured and used as a suppressing factor for that position. The intensity values are aggregated to determine the correct depth plane of each plane object. The experimental and simulation results show that the reconstructed depth image on the incorrect depth plane is effectively suppressed, and that the depth image on the correct depth plane is reconstructed clearly without any noise. The correct depth plane is also exactly determined.

Elemental Image Synthesis for Integral Imaging Using Phase-shifting Digital Holography

  • Jeong, Min-Ok;Kim, Nam;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.275-280
    • /
    • 2008
  • We propose a method generating elemental images for the integral imaging using 4-step phaseshifting digital holography. Phase shifting digital holography is a way recording the digital hologram by changing the phase of the reference beam and extracting the complex field of the object beam. Since all 3D information is captured by phase-shifting digital holography, the elemental images for any specifications of the lens array can be generated from single phase-shifting digital holography. In experiment, phase-shifting is achieved by rotating half- and quarter- wave plates and the resultant interference patterns are captured by a $3272{\times}2469$ pixel CCD camera with $27{\mu}m{\times}27{\mu}m$ pixel size.