• 제목/요약/키워드: 3D image processing

Search Result 1,105, Processing Time 0.037 seconds

Development of PC-based Radiation Therapy Planning System

  • Suh, Tae-Suk;P task group, R-T
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.121-122
    • /
    • 2002
  • The main principle of radiation therapy is to deliver optimum dose to tumor to increase tumor cure probability while minimizing dose to critical normal structure to reduce complications. RTP system is required for proper dose plan in radiation therapy treatment. The main goal of this research is to develop dose model for photon, electron, and brachytherapy, and to display dose distribution on patient images with optimum process. The main items developed in this research includes: (l) user requirements and quality control; analysis of user requirement in RTP, networking between RTP and relevant equipment, quality control using phantom for clinical application (2) dose model in RTP; photon, electron, brachytherapy, modifying dose model (3) image processing and 3D visualization; 2D image processing, auto contouring, image reconstruction, 3D visualization (4) object modeling and graphic user interface; development of total software structure, step-by-step planning procedure, window design and user-interface. Our final product show strong capability for routine and advance RTP planning.

  • PDF

Managing and Modeling Strategy of Geo-features in Web-based 3D GIS

  • Kim, Kyong-Ho;Choe, Seung-Keol;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.75-79
    • /
    • 1999
  • Geo-features play a key role in object-oriented or feature-based geo-processing system. So the strategy for how-to-model and how-to-manage the geo-features builds the main architecture of the entire system and also supports the efficiency and functionality of the system. Unlike the conventional 2D geo-processing system, geo-features in 3B GIS have lots to be considered to model regarding the efficient manipulation and analysis and visualization. When the system is running on the Web, it should also be considered that how to leverage the level of detail and the level of automation of modeling in addition to the support for client side data interoperability. We built a set of 3D geo-features, and each geo-feature contains a set of aspatial data and 3D geo-primitives. The 3D geo-primitives contain the fundamental modeling data such as the height of building and the burial depth of gas pipeline. We separated the additional modeling data on the geometry and appearance of the model from the fundamental modeling data to make the table in database more concise and to allow the users more freedom to represent the geo-object. To get the users to build and exchange their own data, we devised a file format called VGFF 2.0 which stands for Virtual GIS File Format. It is to describe the three dimensional geo-information in XML(eXtensible Markup Language). The DTD(Document Type Definition) of VGFF 2.0 is parsed using the DOM(Document Object Model). We also developed the authoring tools for. users can make their own 3D geo-features and model and save the data to VGFF 2.0 format. We are now expecting the VGFF 2.0 evolve to the 3D version of SVG(Scalable Vector Graphics) especially for 3D GIS on the Web.

  • PDF

Development of a 3-D Position Measurement Algorithm using 2-D Image Information (2차원 영상 정보를 이용한 3차원 위치 측정 알고리즘 개발)

  • Lee, J.H.;Jung, S.H.;Kim, D.H.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.141-148
    • /
    • 2013
  • There are several problems in the conventional 2-D image processing and 3-D measurement systems. In the case of the 2-D image processing system, it is not possible to detect elevation data. In a 3-D measurement system, it requires a skillful operator and a lot of time for measuring data. Also, there exist data errors depending on operators. The limitation of detecting elevation data in the 2-D image processing system can be solved by laser diodes. In this study an algorithm that measures the accurate data in a subject face to be detected by combining laser diodes and a commercial CCD camera is developed. In the development process, a planar equation is developed using laser diodes and the equation is used to obtain a normal vector. Based on the results, an algorithm that transforms commercial CCD camera coordinates to 3-D coordinates is proposed. The completed measurement method will be applied to replace a manual measurement system for vehicle bodies and parts by an automated system.

A Visualization System of Brain MR image based on VTK

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.336-339
    • /
    • 2012
  • VTK is a free but professional development platform for images three-dimensional (3D) reconstruction and processing. It is powerful, open-source, and users can customize their own needs by self-development of great flexibility. To give the doctors more and detailed information by simulate dissection to the 3-D brain MRI image after reconstruction. A Visualization System (VS) is proposed to achieve 3D brain reconstruction and virtual dissection functions. Based on the free VTK visualization development platform and Visual Studio 2010 IDE development tools, through C++ language, using real people's MRI brain dataset, we realized the images 3D reconstruction and also its applications and extensions correspondingly. The display effect of the reconstructed 3D image is well and intuitive. With the related operations such as measurement, virtual dissection and so on, the good results we desired could be achieved.

Comparison of Open Source based Algorithms and Filtering Methods for UAS Image Processing (오픈소스 기반 UAS 영상 재현 알고리즘 및 필터링 기법 비교)

  • Kim, Tae Hee;Lee, Yong Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.155-168
    • /
    • 2020
  • Open source is a key growth engine of the 4th industrial revolution, and the continuous development and use of various algorithms for image processing is expected. The purpose of this study is to examine the effectiveness of the UAS image processing open source based algorithm by comparing and analyzing the water reproduction and moving object filtering function and the time required for data processing in 3D reproduction. Five matching algorithms were compared based on recall and processing speed through the 'ANN-Benchmarks' program, and HNSW (Hierarchical Navigable Small World) matching algorithm was judged to be the best. Based on this, 108 algorithms for image processing were constructed by combining each methods of triangulation, point cloud data densification, and surface generation. In addition, the 3D reproduction and data processing time of 108 algorithms for image processing were studied for UAS (Unmanned Aerial System) images of a park adjacent to the sea, and compared and analyzed with the commercial image processing software 'Pix4D Mapper'. As a result of the study, the algorithms that are good in terms of reproducing water and filtering functions of moving objects during 3D reproduction were specified, respectively, and the algorithm with the lowest required time was selected, and the effectiveness of the algorithm was verified by comparing it with the result of 'Pix4D Mapper'.

Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object- (원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출-)

  • Kim, S. C.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF

Evaluation of Coding Performance and Design of Spatial Multiplexer or 3D Endoscopic Image Processing (3D 내시경 영상처리를 위한 다중화기 설계와 부호화 성능평가)

  • Song, C.G.;Lee, S.M.;Lee, Y.M.;Kim, W.K.;Hwang, J.D.;Kim, J.H.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.137-141
    • /
    • 1997
  • In this study, in order to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery, three dimensional endoscopic system is designed. These 3D systems have our features of stereoendoscopic image processing: real time image capture and retrieve; presentation of left and right image on a single monitor; separable processing of the left and right eye images; coding of the 3D endoscopic video. For 3D endoscopic video coding, three approaches are presented based on interlaced picture structure, side-field format structure, and simulcast technique. Experimental results and performances comparisons are presented and analyzed or these approaches. Digital video coding techniques are presented or 3D endoscopic video sequences by means of an MPEG-2 video coding.

  • PDF

The Surface Information Acquisition of Rock Slope using 3D Digital Image (3차원 수치영상을 이용한 암반사면의 지표정보 획득)

  • 엄대용;강준묵
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.203-208
    • /
    • 2004
  • Recently, digital image is increasing greatly practical use degree in several industry fields including construction. And interest about 3D digital image that can express practical object realistically is augmented greatly. In this study, developed 3D digital image generation system based on digital photogrammetry and created 3D digital image for object. And, wished to verify of 3D digital image through comparative analysis with processing result by digital photogrammetry system been using much the latest for acquisition of 3D information. Also, wished to apply to surface information acquisition about rock slope and execute investigation about discontinuity of joint etc. As the result, could created 3D digital image for object using the 3D digital image generation system developing in this study, and acquire surface information about rock slope efficiently.

  • PDF

Workflow for Anamorphic 3D Advertising based on Image Distortion

  • Fu Linwei;Tae Soo Yun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.170-183
    • /
    • 2024
  • In producing anamorphic 3D advertisement projects, it is necessary to apply the principles of illusion art to distort the images output to the screen (Image Distortion) so that their display aligns with our visual perception in a real three-dimensional environment. We focuse on the methods of image distortion in the creation of content for anamorphic 3D advertisement screens in this thesis. We propose using Unity 3D's real-time rendering instead of the offline rendering method of compositing method, and employing UV grid mapping to replace the manual correction in Adobe After Effects(AE). The significance of this paper lies in simplifying the image distortion processing workflow in anamorphic 3D projects and optimizing the image distortion creation methods used in compositing method. In outdoor anamorphic 3D advertisement projects, the proposed image distortion creation method demonstrates significant advantages in terms of production time, process simplification, flexibility, and expansion possibilities. Our research provides new perspectives and methods for the creation of anamorphic 3D content, offering theoretical and methodological references for professionals working on similar contents.

A Study on Speed Improvement of Medical Image Reconstruction Using Limited Range Process (부분영역처리를 이용한 영상재구성의 속도개선에 관한 연구)

  • Ryu, Jong-Hyun;Beack, Seung-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.658-663
    • /
    • 1999
  • 2D sliced CT images hardly express the human disease in a space. This space expression can be reconstructed into 3D image by piling up the CT sliced image in succession. In medical image, in order to get the reconstructed 3D images, expensive system or much calculation time is needed. But by changing the method of reconstruction procedure and limit the range, the reconstruction time could be reduced. In this study, to reduce the processing time and memory, we suggested a method of interpolation and ray casting processing at the same time in a limited range. Such a limited range processing have advantages that we could reduce the unnecessary interpolation and ray casting. Through a experiment, it is founded that the reconstruction time and the memory was much reduced.

  • PDF