• Title/Summary/Keyword: 3D human simulation

Search Result 214, Processing Time 0.024 seconds

Phase Error Decrease Method for Target Direction Detection Improvement (표적 방향 탐지 향상을 위한 위상 오차 감소 방법)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • This paper proposes a method to minimize the target's direction detection error using RADAR. The radar system cannot accurately detect the target direction due to the phase error of he received signal. The proposed method of this study obtains a phase by applying an root mean square to each antenna incident signal, and reduces the phase error by using an optimal signal to noise ratio. In the simulation result, the probability of detecting the target direction is the best when the antenna spacing is half wavelength. The conventional method of direction detection probability 10-1.7 and the proposed method is 10-3.3. The target detection direction of the existing method represents [-8°,8°] with an error of 2 degrees. The target detection direction of the proposed method is shown in [-10°,10°], and all target directions are accurately detected. In the future, There is need for a method to reduce the phase error even though the resolution decrease.

An Autonomous Navigation System for Unmanned Underwater Vehicle (무인수중로봇을 위한 지능형 자율운항시스템)

  • Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.235-245
    • /
    • 2007
  • UUV(Unmanned Underwater Vehicle) should possess an intelligent control software performing intellectual faculties such as cognition, decision and action which are parts of domain expert's ability, because unmanned underwater robot navigates in the hazardous environment where human being can not access directly. In this paper, we suggest a RVC intelligent system architecture which is generally available for unmanned vehicle and develope an autonomous navigation system for UUV, which consists of collision avoidance system, path planning system, and collision-risk computation system. We present an obstacle avoidance algorithm using fuzzy relational products for the collision avoidance system, which guarantees the safety and optimality in view of traversing path. Also, we present a new path-planning algorithm using poly-line for the path planning system. In order to verify the performance of suggested autonomous navigation system, we develop a simulation system, which consists of environment manager, object, and 3-D viewer.

Performance of NCAR Regional Climate Model in the Simulation of Indian Summer Monsoon (NCAR 지역기후모형의 인도 여름 몬순의 모사 성능)

  • Singh, Gyan Prakash;Oh, Jai-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.183-196
    • /
    • 2010
  • Increasing human activity due to rapid economic growth and land use change alters the patterns of the Asian monsoon, which is key to crop yields in Asia. In this study, we tested the performance of regional climate model (RegCM3) by simulating important components of Indian summer monsoon, including land-ocean contrast, low level jet (LLJ), Tibetan high and upper level Easterly Jet. Three contrasting rain years (1994: excess year, 2001: normal year, 2002: deficient year) were selected and RegCM3 was integrated at 60 km horizontal resolution from April 1 to October 1 each year. The simulated fields of circulations and precipitation were validated against the observation from the NCEP/NCAR reanalysis products and Global Precipitation Climatology Centre (GPCC), respectively. The important results of RegCM3 simulations are (a) LLJ was slightly stronger and split into two branches during excess rain year over the Arabian Sea while there was no splitting during normal and deficient rain years, (b) huge anticyclone with single cell was noted during excess rain year while weak and broken into two cells in deficient rain year, (c) the simulated spatial distribution of precipitation was comparable to the corresponding observed precipitation of GPCC over large parts of India, and (d) the sensitivity experiment using NIMBUS-7 SMMR snow data indicated that precipitation was reduced mainly over the northeast and south Peninsular India with the introduction of 0.1 m of snow over the Tibetan region in April.

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Effective Reconstruction of Extensive Orbital Floor Fractures Using Rapid Prototyping Model (신속 조형 모델을 이용한 안와바닥 골절 정복술)

  • Kim, Hye-Young;Oh, Deuk-Young;Lee, Woo-Sung;Moon, Suk-Ho;Seo, Je-Won;Lee, Jung-Ho;Rhie, Jong-Won;Ahn, Sang-Tae
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.633-638
    • /
    • 2010
  • Purpose: Orbital bone is one of the most complex bones in the human body. When the patient has a fracture of the orbital bone, it is difficult for the surgeon to restore the fractured orbital bone to normal anatomic curvature because the orbital bone has complex curvature. We developed a rapid prototyping model based on a mirror image of the patient's 3D-CT (3 dimensional computed tomography) for accurate reduction of the fractured orbital wall. Methods: A total of 7 cases of large orbital wall fracture recieved absorbable plate prefabrication using rapid prototyping model during surgery and had the manufactured plate inserted in the fracture site. Results: There was no significant postoperative complication. One patient had persistent diplopia, but it was resolved completely after 5 weeks. Enophthalmos was improved in all patients. Conclusion: With long term follow-up, this new method of orbital wall reduction proved to be accurate, efficient and cost-effective, and we recommend this method for difficult large orbital wall fracture operations.

Development of Rotary Type Transplanting Device for Vegetable Transplanter (채소정식기용 로터리 식부장치 개발)

  • Park S. H.;Cho S. C.;Kim J. Y.;Choi D. K.;Kim C. K.;Kwak T. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.135-140
    • /
    • 2005
  • Vegetable transplanting operation has been wholly depended on human labor that needs 18.4 hrs per 10 acres in Korea. Since periods of vegetable transplanting operations are limited, their mechanization has been strongly demanded. This study was conducted to develop a transplanting device that was the core technology for vegetable transplanter. In order to find out transplanting track and velocity of transplanting device, a kinematic analysis software was employed. Evaluation of prototype was carried out in the circular soil bin with high speed camera. Rotary type transplanting device produced an elliptic loci when two links of different lengths were moving to the opposite direction. The length of two links was 75mm and 44mm, respectively. Maximum displacement of rotary type transplanting device was 238mm. It seemed that the transplanting elliptic loci of transplanting device were identical between the simulation output generated by kinematic analysis software and the circular soil bin test result with a high speed camera. The rotary type transplanting device can be suitable fur transplanting short height vegetable, less than 20 cm length vegetables such as Chinese cabbage and cabbage, etc.

Turbo FLASH NRI Using Optimized Flip Angle Pattern: Application to Inversion-Recovery T1-Weighted Imaging (최적화된 Flip Angle Pattern을 사용한 Turbo FLASH MRI: Inversion-Recovery T1-Weighted Imaging에의 응용)

  • Oh, C.H.;Choi, H.J.;Yang, Y.J.;Lee, D.R.;Ryu, Y.C.;Hyun, J.H.;Kim, S.R.;Yi, Y.;Jung, K.J.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.55-56
    • /
    • 1998
  • The 3-D Fast Gradient Echo (Turbo FLASH, Turbo Fast Low Angle Shot) sequence is optimized to achieve a good T1 contrast using variable excitation flip angles. In Turbo FLASH sequence, depending on the contrast preparation scheme, various types of image contrast can be established. While proton density contrast is obtained when using a short repetition time with a short echo time and small flip angles, T1 or T2 weighting can be obtained with proper contrast preparation sequences applied before the above proton density Turbo FLASH sequence. To maximize the contrast to noise ratio while retaining a sharp impulse response (smooth frequency domain response), the excitation flip-angle pattern is optimized through simulation and experiments. The TI (the delay after the preparation sequence which is a 180 degree inversion RF pulse in the IR T1 weighted imaging case), TD (the delay time between the Turbo FLASH sequence and the next preparation), and TR are also optimized fur the best image quality. The proposed 3-D Turbo FLASH provides $1mm\times1mm\times1.5mm$ high resolution images within a reasonable 5-8 minutes of imaging time. The proposed imaging sequence has been implemented in a Medison's Magnum 1.0T system and verified through simulations as well as human volunteer imaging. The experimental results show the utility of the proposed method.

  • PDF

Catalytic Ability Improvement of Phenylalanine Hydroxylase from Chromobacterium violaceum by N-Terminal Truncation and Proline Introduction

  • Liu, Zhongmei;Cheng, Zhongyi;Ye, Shuangshuang;Zhou, Li;Zhou, Zhemin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1375-1382
    • /
    • 2019
  • Phenylalanine hydroxylase from Chromobacterium violaceum (CvPAH) is a monomeric enzyme that converts phenylalanine to tyrosine. It shares high amino acid identity and similar structure with a subunit of human phenylalanine hydroxylase that is a tetramer, resulting in the latent application in medications. In this study, semirational design was applied to CvPAH to improve the catalytic ability based on molecular dynamics simulation analyses. Four N-terminal truncated variants and one single point variant were constructed and characterized. The D267P variant showed a 2.1-fold increased thermal stability compared to the wild type, but lower specific activity was noted compared with the wild type. The specific activity of all truncated variants was a greater than 25% increase compared to the wild type, and these variants showed similar or slightly decreased thermostability with the exception of the $N-{\Delta}9$ variant. Notably, the $N-{\Delta}9$ variant exhibited a 1.2-fold increased specific activity, a 1.3-fold increased thermostability and considerably increased catalytic activity under the neutral environment compared with the wild type. These properties of the $N-{\Delta}9$ variant could advance medical and pharmaceutical applications of CvPAH. Our findings indicate that the N-terminus might modulate substrate binding, and are directives for further modification and functional research of PAH and other enzymes.

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.