• Title/Summary/Keyword: 3D formwork

Search Result 32, Processing Time 0.025 seconds

Evaluation of Maximum Lateral Pressure on the 3D Printed Irregular-Shaped Formwork by Finite Element Analysis (3D 프린터로 제작된 비정형 거푸집의 최대 측압에 대한 유한요소해석)

  • Lee, Jeong-Ho;Ju, Young K.;Kim, Hak-Beom
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • The F3D(Free-Form Formwork 3D Printer) technology that manufactures EPS(Expanded Polystyrene) formworks for irregular-shaped concrete structures by 3D printers was developed to reduce the cost and time. Because of weak strength and low elastic modulus of the EPS, structural performance including lateral pressure by fresh concrete of the formwork that consisted of EPS should be investigated. In order to calculate lateral pressures acting on formwork, several variables including sizes, shapes of formwork, tangential force(fricition) between fresh concrete and formwork, and material properties of fresh concrete should be considered. However, current regulations have not considered the properties of concrete, only focused on vertical formwork. Galleo introduced 3-dimensional finite element analysis models to calculate lateral pressure on formwork. Thus, proposed finite element analysis model based on previous studies were verified for vertical formwork and irregular-shaped formwork. The test results were compared with those by FEM analysis. As a result, the test agrees well with the analysis.

Application of 3D Printing Technology for Formwork Constructability Review in Tall Building Construction (초고층 거푸집 공사의 시공성 검토를 위한 3D Printing의 활용)

  • Lee, Junehyuck;Lee, Dongmin;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.69-70
    • /
    • 2016
  • The constructability of formwork has a significantly influence on the duration and cost in tall building construction. However, current installation and dismantling process are conducted with heuristic approaches due to the absence of reasonable constructability review method. This study proposes a new method to review the constructability of formwork by utilizing 3D printing technology. It is expected that the suggested review method could reduce formwork duration and cost with subjective, but rational manner.

  • PDF

A Study on the Development of 3D Software for Automated Formwork Design (거푸집 자동화 설계를 위한 3차원 기반 소프트웨어 개발에 관한 연구)

  • Lee, Bo-Kyeong;Lee, Tae-Hoon;Kim, Jin-Sung;Lee, Dong-Eun;Choi, Hyeong-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.112-113
    • /
    • 2019
  • In this study, development of 3D software for automated formwork design was conducted to achieve optimization and reduction of labor for temporary work. Through the literature review, the current technical level was identified and the required functions of 3D software for automated formwork design were derived. The 3D software should be developed with the aim of automating 3D design, improving construction quality and utilizing the Internet of Things. As a preliminary step to develop 3D software, the prototype demo version was developed to implement 3D design automation function, which confirm the possibility of 3D software development.

  • PDF

Artificial Intelligence Image Segmentation for Extracting Construction Formwork Elements (거푸집 부재 인식을 위한 인공지능 이미지 분할)

  • Ayesha Munira, Chowdhury;Moon, Sung-Woo
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Concrete formwork is a crucial component for any construction project. Artificial intelligence offers great potential to automate formwork design by offering various design options and under different criteria depending on the requirements. This study applied image segmentation in 2D formwork drawings to extract sheathing, strut and pipe support formwork elements. The proposed artificial intelligence model can recognize, classify, and extract formwork elements from 2D CAD drawing image and training and test results confirmed the model performed very well at formwork element recognition with average precision and recall better than 80%. Recognition systems for each formwork element can be implemented later to generate 3D BIM models.

AN AUTOMATED FORMWORK MODELING SYSTEM DEVELOPMENT FOR QUANTITY TAKE-OFF BASED ON BIM

  • Seong-Ah Kim;Sangyoon Chin;Su-Won Yoon;Tae-Hong Shin;Yea-Sang Kim;Cheolho Choi
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1113-1116
    • /
    • 2009
  • The attempt to use a 3D model each field such as design, structure, construction, facilities, and estimation in the construction project has recently increased more and more while BIM (Building Information Modeling) that manages the process of generating and managing building data has risen during life cycle of a construction project. While the 2D Drawing based work of each field is achieved in the already existing construction project, the BIM based construction project aims at accomplishing 3D model based work of each field efficiently. Accordingly, the solution that fits 3D model based work of each field and supports plans in order to efficiently accomplish the relevant work is demanded. The estimation, one of the fields of the construction project, has applied BIM to calculate quantity and cost of the building materials used to construction works after taking off building quantity information from the 3D model by a item for a Quantity Take-off grouping the materials relevant to a 3D object. A 3D based estimation program has been commonly used in abroad advanced countries using BIM. The program can only calculate quantity related to one 3D object. In other words, it doesn't support the take-off process considering quantity of a contiguous object. In case of temporary materials used in the frame construction, there are instances where quantity is different by the contiguous object. For example, the formwork of the temporary materials quantity is changed by dimensions of the contiguous object because formwork of temporary materials goes through the quantity take-off process that deduces quantity of the connected object when different objects are connected. A worker can compulsorily adjust quantity so as to recognize the different object connected to the contiguous object and deduces quantity, but it mainly causes the confusion of work because it must complexly consider quantity of other materials related to the object besides. Therefore, this study is to propose the solution that automates the formwork 3D modeling to efficiently accomplish the quantity take-off of formwork by preventing the confusion of the work which is caused by the quantity deduction process between the contiguous object and the connected object.

  • PDF

Permanent Formwork of PLA Filament utilizing 3D Printing Technology (3D 프린팅 기술을 활용한 PLA 필라멘트 비탈형 거푸집 연구)

  • Jeong, Junhyeong;Hyun, Jihun;Jeong, Heesang;Go, Huijae;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2021
  • In recent years, the design of buildings is changing from formal to creative and freeform. Accordingly, the scale of construction technology is changing to architectural design and construction of irregular buildings. Using the FDM method, which is one of the 3D printing technologies, it is possible to manufacture various forms of irregular formwork inexpensively and quickly coMPared to the existing formwork, and it seems to be able to solve the manpower problem. Using a 3D printer, the PLA filament formwork is produced in the form of a cylinder and a rectangular cuboid, and the usability of the PLA filament formwork is confirmed by examining the compression strength test and the degree of deformation and reusability over 28 days of age. Different sizes of additional specimens are also conducted according to the size. As a result of the experiment, it was confirmed that the filament formwork itself has about 3~4MPa strength. As a result of reviewing data through existing linear studies and experiments, it is appropriate to use more than 60% infill, and it is advantageous in terms of strength. As a result of cutting and dismantling the filament formwork, the surface is very clean and there is no damage, so it can be reused.

A new developed approach for EDL induced from a single concentrated force

  • Bekiroglu, Serkan;Arslan, Guray;Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1105-1119
    • /
    • 2016
  • In this study, it is presented that a new developed approach for equivalent area-distributed loading (EADL) induced from a single concentrated force. For the purpose, a full scale 3D steel formwork system was constructed in laboratory conditions. A developed load transmission platform was put on the formwork system and loaded step by step on the mass center. After each load increment, displacement was measured in several crictical points of the system. The developed platform which was put in to slab of formwork to equivalently distribute the load from a point to the whole slab was constituted using I profiles. A 3D finite element model of the formwork system was analyzed to compare numerical displacement results with experimental ones. In experimental tests,difference among the displacements obtained from reference numerical model (model applied EADL) and main numerical model (model applied single load using a load cell via load transmission platform) is about %13 in avarage. Difference among the displacements obtained from experimental results and main numerical model under 30 kN single load is about %11 in avarage. The results revealed that the displacements obtained experimentally and numerically are dramatically closed to each other. It is highlighted from the study that the developed approach is reliable and useful to get EDL.

Architectural Product and Formwork Manufacture using 3D Printing - Applicability Verification Through Manufacturing Factor Prediction and Experimentation - (3D 프린팅을 통한 거푸집 제조 및 건축 상품 구현 - 제조인자예측과 실험을 통한 적용가능성 검증 -)

  • Park, Jinsu;Kim, kyung taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.113-117
    • /
    • 2022
  • Additive manufacturing (AM, also known as 3D printing) technology is digitalized technology, making it easy to predict and manage quality and also, have design freedom ability. With these advantages, AM technology is applied to various industries. In particular, a method of manufacturing buildings and infrastructure with AM technology is being proposed to the construction industry. However, the application of AM technology is restricted due to problems such as insufficient history and quality of technology, lack of construction management methods, and certification of manufacturing products. Therefore, the manufacture of architectural products is implemented with indirect AM technology. In particular, it manufactures formwork using AM and injecting building materials to implement the architectural product. In this study, hybrid type material extrusion AM is used to manufacture large-sized formwork and implement building products. Moreover, we identify factors that can predict productivity and economic feasibility in the additive manufacturing process. As a result, design optimization results are proposed to reduce the production cost and time of architecture buildings.

Development of Creative Design and Construction Methods of Bridge Piers using 3D Model (3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발)

  • Lee, Sang-Yong;Dong, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.

Innovative Technologies and Their Application on the Construction of a 100-Plus-Story Skyscraper

  • Haowen, Ye
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.161-169
    • /
    • 2015
  • Experience on the construction of several 100-plus-story skyscrapers including Guangzhou West Tower, Guangzhou East Tower, and Shenzhen's KK100 is described considering the increasingly strong development trend of 100-plus-story skyscrapers in China. Difficulties in the construction of 100-plus-story skyscrapers are investigated. Four innovative construction technologies receive detailed descriptions: intelligently and entirely-jacked work platforms, formwork and suspension scaffolding systems ("jacking and formwork systems"), multi-function low-carbon concrete, 5D-BIM ("five-dimensional building information modeling"), and safe and rapid vertical transport, as they have found successful applications in actual projects. Popularized systematically as technical achievements, these technologies will significantly influence the construction of similar projects in the future, and produce more social and economic benefits.