• Title/Summary/Keyword: 3D fitted cover

Search Result 5, Processing Time 0.021 seconds

Guidelines of 2D Pattern Development Process for 3D Fitted Cover of Character Toys (캐릭터 인형용 밀착커버 패턴개발 프로세스의 가이드라인)

  • Lee, Heeran
    • Fashion & Textile Research Journal
    • /
    • v.19 no.5
    • /
    • pp.635-645
    • /
    • 2017
  • The industry of character toys is increasing and new characters are constantly being developed. However, the development of 2D cover patterns for toys is time-consuming due to frequent pattern modifications made through trial and error. Studies are now underway to obtain 2D clothing patterns from 3D body data, however, little research has been done on 2D pattern of character toys. This study suggests efficient guidelines to develop 2D cover patterns with a reasonable accuracy and processing time. Two 3D models of a dog and rabbit were used to develop 2D cover patterns. Independent variables of this study are set as 3 levels of triangle area (small, medium, and large) that influence the efficacy of 3D and 2D pattern development. The determination of the appropriate triangular area was based on the area and shape change of the 2D pattern. A medium or large triangle area was shown to be suitable for a character dog with a smooth curved surface. However, the appropriate triangle area was small if the characteristics of the curved surface are complicated as in the case of rabbit. The head of a dog (a double-curved surface) and the curved forepaw of a rabbit (a triangular area) should be small when the characteristics of the curved surface (such as the hind leg of a rabbit having a large convex surface and a small surface area) are complicated. Grouping by 3D surface characteristics could be a suitable guideline for the triangle area selection.

The solid angle estimation of acetabular coverage of the femoral head using 3D method (입체각 측정을 통한 대퇴골두에 대한 관골구 coverage 측정)

  • Choi, K.H.;Kim, M.C.;Lim, C.T.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.123-126
    • /
    • 1997
  • We present a method for the estimation of 3D solid angle assessment of the acetabular coverage of the femoral head in 3D space. At first, femoral head and acetabulum is segmented from the original CT scan images. The slice thickness is 1.5mm and the number of slices is usually 30-40 to cover the entire acetabulum. The superior half of the femoral head is modeled as part of a sphere. Thus, the axial cross sections of the upper half of the femoral head are also modeled as circles. A set of points from each outline image of femoral head is fitted recursively into a circle by minimizing root-mean-square (RMS) error. With these fitted circles, a center point of the femoral head model is evaluated. This is a reference point for calculating the solid angle of the acetabular inner surface. Next, the tangent lines connecting from a set of points of the acetabular edge to the center of the fitted sphere are obtained. The lines pass through the unit sphere whose center is the same as that of the femoral head. With the points on the unit sphere, we calculate area and estimate the solid angle. Based on this solid angle, the deformity of the acetabulum is analyzed. In case of normal subject, the solid angle is about 4.3 (rad) and acetabular coverage is 68%.

  • PDF

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Colajanni, Piero;Pagnotta, Salvatore
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.231-248
    • /
    • 2022
  • Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

A Topographical Classifier Development Support System Cooperating with Data Mining Tool WEKA from Airborne LiDAR Data (항공 라이다 데이터로부터 데이터마이닝 도구 WEKA를 이용한 지형 분류기 제작 지원 시스템)

  • Lee, Sung-Gyu;Lee, Ho-Jun;Sung, Chul-Woong;Park, Chang-Hoo;Cho, Woo-Sug;Kim, Yoo-Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.133-142
    • /
    • 2010
  • To monitor composition and change of the national land, intelligent topographical classifier which enables accurate classification of land-cover types from airborne LiDAR data is highly required. We developed a topographical classifier development support system cooperating with da1a mining tool WEKA to help users to construct accurate topographical classification systems. The topographical classifier development support system has the following functions; superposing LiDAR data upon corresponding aerial images, dividing LiDAR data into tiles for efficient processing, 3D visualization of partial LiDAR data, feature from tiles, automatic WEKA input generation, and automatic C++ program generation from the classification rule set. In addition, with dam mining tool WEKA, we can choose highly distinguishable features by attribute selection function and choose the best classification model as the result topographical classifier. Therefore, users can easily develop intelligent topographical classifier which is well fitted to the developing objectives by using the topographical classifier development support system.

A Proposal for Korean armed forces preparing toward Future war: Examine the U.S. 'Mosaic Warfare' Concept (미래전을 대비한 한국군 발전방향 제언: 미국의 모자이크전 수행개념 고찰을 통하여)

  • Chang, Jin O;Jung, Jae-young
    • Maritime Security
    • /
    • v.1 no.1
    • /
    • pp.215-240
    • /
    • 2020
  • In 2017, the U.S. DARPA coined 'mosaic warfare' as a new way of warfighting. According to the Timothy Grayson, director of DARPA's Strategic Technologies Office, mosaic warfare is a "system of system" approach to warfghting designed around compatible "tiles" of capabilities, rather than uniquely shaped "puzzle pieces" that must be fitted into a specific slot in a battle plan in order for it to work. Prior to cover mosaic warfare theory and recent development, it deals analyze its background and several premises for better understanding. The U.S. DoD officials might acknowledge the current its forces vulnerability to the China's A2/AD assets. Furthermore, the U.S. seeks to complete military superiority even in other nation's territorial domains including sea and air. Given its rapid combat restoration capability and less manpower casualty, the U.S. would be able to ready to endure war of attrition that requires massive resources. The core concept of mosaic warfare is a "decision centric warfare". To embody this idea, it create adaptability for U.S. forces and complexity or uncertainty for the enemy through the rapid composition and recomposition of a more disag g reg ated U.S. military force using human command and machine control. This allows providing more options to friendly forces and collapse adversary's OODA loop eventually. Adaptable kill web, composable force packages, A.I., and context-centric C3 architecture are crucial elements to implement and carry out mosaic warfare. Recently, CSBA showed an compelling assessment of mosaic warfare simulation. In this wargame, there was a significant differences between traditional and mosaic teams. Mosaic team was able to mount more simultaneous actions, creating additional complexity to adversaries and overwhelming their decision-making with less friendly force's human casualty. It increase the speed of the U.S. force's decision-making, enabling commanders to better employ tempo. Consequently, this article finds out and suggests implications for Korea armed forces. First of all, it needs to examine and develop 'mosaic warfare' in terms of our security circumstance. In response to future warfare, reviewing overall force structure and architecture is required which is able to compose force element regardless domain. In regards to insufficient defense resources and budget, "choice" and "concentration" are also essential. It needs to have eyes on the neighboring countries' development of future war concept carefully.

  • PDF