• 제목/요약/키워드: 3D finite element modeling

검색결과 352건 처리시간 0.026초

J-T에 의한 3차원 반타원 계면균열선단 응력장의 기술 (J-T Characterization of Stress Fields Along 3D Semi-Elliptical Interfacial Crack Front)

  • 최호승;이형일
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1250-1261
    • /
    • 2002
  • Many research works have validated the J-T approach to elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed for more practical 3D structures than the idealized plane strain specimens. In this work, we perform 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes for semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. Thereby we extend the validity of J-T application to 3D structures and infer some useful informations for the design or assessment of pipe welds.

삼차원 유한요소의 자동생성 (1) - 사면체 옥트리의 구성 - (Automatic Generation of 3-D Finite Element Meshes : Part(I) - Tetrahedron-Based Octree Encoding -)

  • 정융호;이건우
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3159-3174
    • /
    • 1994
  • A simple octree encoding algorithm based on a tetrahedron root has been developed to be used for fully automatic generation of three dimensional finite element meshes. This algorithm starts octree decomposition from a tetrahedron root node instead of a hexahedron root node so that the terminal mode has the same topology as the final tetrahedral mesh. As a result, the terminal octant can be used as a tetrahedral finite element without transforming its topology. In this part(I) of the thesis, an efficient algorithm for the tetrahedron-based octree is proposed. For this development, the following problems have been solved, : (1) an efficient data structure for storing the octree and finite elements, (2) an encoding scheme of a tetrahedral octree, (3) a neighbor finding technique for the tetrahedron-based octree.

Domain Mapping using Nonlinear Finite Element Formulation

  • Patro, Tangudu Srinivas;Voruganti, Hari K.;Dasgupta, Bhaskar;Basu, Sumit
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.29-36
    • /
    • 2009
  • Domain mapping is a bijective transformation of one domain to another, usually from a complicated general domain to a chosen convex domain. This is directly useful in many application problems like shape modeling, morphing, texture mapping, shape matching, remeshing, path planning etc. A new approach considering the domain as made up of structural elements, like membranes or trusses, is developed and implemented using the nonlinear finite element formulation. The mapping is performed in two stages, boundary mapping and inside mapping. The boundary of the 3-D domain is mapped to the surface of a convex domain (in this case, a sphere) in the first stage and then the displacement/distortion of this boundary is used as boundary conditions for mapping the interior of the domain in the second stage. This is a general method and it develops a bijective mapping in all cases with judicious choice of material properties and finite element analysis. The consistent global parameterization produced by this method for an arbitrary genus zero closed surface is useful in shape modeling. Results are convincing to accept this finite element structural approach for domain mapping as a good method for many purposes.

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin;Harmon, Thomas G.;Dyke, Shirley J.;So, Migeum
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.217-241
    • /
    • 2008
  • In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

Virtual Modeling Data와 비선형 해석 프로그램의 Interface 설계 (Interface Design of Virtual Modeling Dataand Nonlinear Analysis Program)

  • 박재근;이헌민;조성훈;이광명;신현목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.100-103
    • /
    • 2008
  • Recently Development of construction system that subjective operators share and control information efficiently based on the three-dimensional space and design information throughout life cycle of construction project is progressing dynamically. In case of civil structures which are infrastructure, Demand for structure of complex system which has multi-functions such as super and smart bridges and express rails is increasing and system development which computerizes and integrates process of structure design is in need. For that, research about link way between three dimensional modeling data and structure analysis programs should be preceded. In this research, therefore, research about interface design between three dimensional virtual modeling data to automate efficient civil-structure-design and nonlinear finite element analysis program which is made up of reinforced concrete material model that express material's character clearly.

  • PDF

유한요소해석을 이용한 전동식 지게차의 진동저감 (Vibration Structure of an Electronic Forklift by Using the Finite Element Analysis)

  • 박철준;임형빈;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.693-696
    • /
    • 2007
  • In this paper, vibration sources of an electric forklift are identified and the forklift vibrations are reduced by structural modification by using the finite element analysis. From some experiments, it is also found that resonances occur because the natural frequencies of the forklift exist in usual driving speed range. To vibration sources of the electric forklift, the modeling is designed by using a commercial 3D CAD program CATIA and the finite element model is designed by a using finite element analysis program ANSYS which can perform modal analysis of flexible mode. To shift the natural frequencies out side the driving speed range, the frame part, the connection parts between main body and loader are modified to increase stiffness. It is verified that considerable amount of vibration are reduced by the structural modification.

  • PDF

Al6061-T6 판재의 마찰교반용접 3D 유한요소 해석 (3D Finite Element Analysis of Friction Stir Welding of Al6061 Plates)

  • 구병춘;정현승
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.73-79
    • /
    • 2011
  • Friction stir welding (FSW) is a solid state joining method patented in 1991 by The Welding Institute (TWI). It is widely used for joining light metals such as Al and Mg alloys. Foreign railway vehicle manufacturing companies have been applying FSW to car body welding, but domestic companies are in the beginning of feasibility study. Therefore, lots of experimental and analytical study is needed. In this study, three-dimensional finite element modeling of the friction stir welding of two Al6061-T6 plates was carried out. And temperature field and residual stresses were obtained and compared to experimental results in the literature. It is found the analytic thermal field is in a good agreement with the experimental results, but there are some differences between numerical and experimental residual stresses.

풍력발전기 로터 블레이드의 등가 구조모델 수립 (Equivalent Structural Modeling of Wind Turbine Rotor Blade)

  • 박영근;황재혁;김석우;장문석;배재성
    • 한국항공운항학회지
    • /
    • 제14권4호
    • /
    • pp.11-16
    • /
    • 2006
  • The wind turbine rotor blade is faced with various aeroelastic problem as rotor blades become bigger and lighter by the use the composite material. The aeroelastic analysis of a wind turbine rotor blade requires its aerodynamic model and structural model. For effective aeroelastic analysis, it is required the simple and effective structural model of the blade. In the present study, we introduce the effective equivalent structural modeling of the blade for aeroelastic analysis. The equivalent beam model of the composite blade based on its 3D finite element model is established. The free vibration analysis shows that the equivalent beam model of the blade is equivalent to its 3D finite element model.

  • PDF

복합재 이탈피의 3차원 구조해석 (A 3-D Structural Analysis of Composite Sabot)

  • 이성호;이강우;박관진;송흥섭
    • 한국군사과학기술학회지
    • /
    • 제6권2호
    • /
    • pp.65-72
    • /
    • 2003
  • Composite sabot can increase the penetration performance of APFSDS projectile by reduction of the sabot weight. However, it has a thick-sectioned lamination and the lamination structure is different from those of the conventional composite parts. In this study, modeling technique for a thick and radially-laminated composite part has been applied in the finite element analysis of composite sabot. Four models of composite lamination for the sabot have been proposed and evaluated for their structural strength.

리바요소를 이용한 섬유강화 고무기저 복합재료의 3차원 유한요소 모델링기법 (3-D Finite Element Modeling of Fiber Reinforced Rubber Composites using a Rubber Element)

  • 정세환;송정한;김진웅;김진영;허훈
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1518-1525
    • /
    • 2006
  • Finite element analyses of structures made of the fiber reinforced composites require an adequate method to characterize the high anisotropic behavior induced by one or several layers of fiber cords with different spatial orientation embedded in a rubber matrix. This paper newly proposes a continuum based rebar element considering change of the orientation of the fiber during deformation of the composite. The mechanical behavior of the embedded fiber is modeled using two-node bar elements in order to consider the relative deformation and spatial orientation of the embedded fiber. For improvement of the analysis accuracy, the load-displacement curve of fiber is applied to the stiffness matrix of fiber. A finite element program is constructed based on the total Lagrangian formulation considering both geometric and material nonlinearity. Finite element analyses of the tensile test are carried out in order to evaluate the validity of the proposed method. Analysis results obtained with the proposed method provides realistic representation of the fiber reinforced rubber composite compared to results of other two models by the Halpin-Tsai equation and a rebar element in ABAQUS/Standard.