• Title/Summary/Keyword: 3D environment

Search Result 4,698, Processing Time 0.036 seconds

3D Character Motion Synthesis and Control Method for Navigating Virtual Environment Using Depth Sensor (깊이맵 센서를 이용한 3D캐릭터 가상공간 내비게이션 동작 합성 및 제어 방법)

  • Sung, Man-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.827-836
    • /
    • 2012
  • After successful advent of Microsoft's Kinect, many interactive contents that control user's 3D avatar motions in realtime have been created. However, due to the Kinect's intrinsic IR projection problem, users are restricted to face the sensor directly forward and to perform all motions in a standing-still position. These constraints are main reasons that make it almost impossible for the 3D character to navigate the virtual environment, which is one of the most required functionalities in games. This paper proposes a new method that makes 3D character navigate the virtual environment with highly realistic motions. First, in order to find out the user's intention of navigating the virtual environment, the method recognizes walking-in-place motion. Second, the algorithm applies the motion splicing technique which segments the upper and the lower motions of character automatically and then switches the lower motion with pre-processed motion capture data naturally. Since the proposed algorithm can synthesize realistic lower-body walking motion while using motion capture data as well as capturing upper body motion on-line puppetry manner, it allows the 3D character to navigate the virtual environment realistically.

3D Environmental Walkthrough Using The Integration of Multiple Segmentation Based Environment Models (다중 분할 기반 환경 모델의 통합에 의한 3차원 환경 탐색)

  • Ryoo, Seung-Taek
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.105-115
    • /
    • 2005
  • An environment model that is constructed using a single image has the problem of a blurring effect caused by the fixed resolution, and the stretching effect of the 3D model caused when information that does not exist on the image occurs due to the occlusion. This paper introduces the registration and integration method using multiple images to resolve the above problem. This method can represent parallax effect and expand the environment model to represent wide range of environment. The segmentation-based environment modeling method using multiple images can build a detail model with optimal resolution.

  • PDF

On Comparison between 2-D and 3-D Numerical Models used to Analyze the Wave Field around a Permeable Submerged Breakwater (투과성잠제 주변의 파동장 해석을 위한 2-D 및 3-D 수치계산의 비교)

  • Hur, Dong-Soo;Choi, Dong-Seok;Lee, Woo-Dong;Yeom, Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2008
  • The aim of this study is to compare the numerical results obtained by 2-D and 3-D models which are used to examine the wave field around a permeable submerged breakwater. At first, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar and turbulent resistance terms and determine the eddy viscosity with LES turbulent model, is used and validated by comparing with existing experimental data. And then, the numerical test on the wave field around a permeable submerged breakwater is performed. It is revealed from the numerical results that, at the onshore side of the submerged breakwater, the wave height by 2-D analysis is higher than that by 3-D analysis. Also, the time-averaged mean flow around a submerged breakwater is discussed in detail.

The Removal Efficiency of Microcystis spp. and Its Ecotoxicity Using Clay (황토의 Microcystis spp. 제거효율 및 생태독성평가)

  • Park, Hye-Jin;Kim, Sang-Hoon;Park, Woo-Sang;Lee, Jae-Yoon;Lee, Jae-An
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Four clays (both natural and commercial types) mainly used in Korea were tested for removal efficiency of Microcystis spp. and ecotoxicity on Daphnia magna and Vibrio fischeri. Four clays (clay A~D) were composed of 91.9~100% of sand (0.02~0.2 mm in particle size). Clay D consisted of lager particles than other clays. Major elements of the four clays were $SiO_2$ (45.3~62.8%), $Al_2O_3$ (18.5~29.7%) and $Fe_2O_3$ (5.4~7.9%). They contained kaolinite (clay mineral), quartz, muscovite, and so on. Clay C and D contained montmorillonite, one of the clay minerals improving clay-cell aggregation. For clay A, B and C, removal efficiency of Microcystis spp. was over 60% at 2 g/L. It reached about 100% at over 5 g/L. For clay D, it was over 60% and 95~100% at 5 g/L and 20 g/L respectively. After adding clays, pH decreased. The greatest drop of pH appeared at clay C. Except for addition of 100 g/L clay C, ecotoxicity on D. magna and V. fischeri didn't appeared at all dose of clays.

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

User Centered Information of Navigation Process Saving Techniques Based on X3D Virtual Environment (X3D 기반 사용자 중심 가상환경 탐색항해를 위한 의미정보 저장 기법)

  • Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.627-630
    • /
    • 2007
  • XML is becoming a de facto standard for exchanging data in Internet data processing environments due to the inherent characteristics such as hierarchical self-describing structures. Nowadays the number of 3D VE(Virtural Environment) available on the internet is constantly increasing, most of them focused low-level geometric data that lack any semantic information. VRML is composed of simple science graph. X3D is constructed based on XML and has many advantage. However, previous researches can not apply various advantage of XML. This work proposes an alternate approach for association semantic information to X3D VE based on XML. These information use navigation to VE. Moreover, we study extraction method of sematic information to XML document. In this work, we study saving techniques for navigation processing.

  • PDF

Prototype Development for Optimization Technique of 3D Visualization of Atmospheric Environmental Information (기상 및 대기질 정보의 3차원 표출 최적화를 위한 시제품 개발 연구)

  • Kim, Gunwoo;Na, Hana;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1047-1059
    • /
    • 2019
  • To address the increase of weather hazards and the emergence of new types of such hazards, an optimization technique for three-dimensional (3D) representation of meteorological facts and atmospheric information was examined in this study as a novel method for weather analysis. The proposed system is termed as "meteorological and air quality information visualization engine" (MAIVE), and it can support several file formats and can implement high-resolution 3D terrain by employing a 30 m resolution digital elevation model. In this study, latest 3D representation techniques such as wind vector fields, contour maps, stream vector, stream line flow along the wind field and 3D volume rendering were applied. Implementation of the examples demonstrates that the results of numerical modeling are well reflected, and new representation techniques can facilitate the observation of meteorological factors and atmospheric information from different perspectives.

Generation of 3 Dimensional Image Model from Multiple Digital Photographs (다중 디지털 사진을 이용한 3차원 이미지 모델 생성)

  • 정태은;석정민;신효철;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1634-1637
    • /
    • 2003
  • Any given object on the motor-driven turntable is pictured from 8 to 72 different views with a digital camera. 3D shape reconstruction is performed with the integrated software called by Scanware from these multiple digital photographs. There are several steps such as configuration, calibration, capturing, segmentation, shape creation, texturing and merging process during the shape reconstruction process. 3D geometry data can be exported to cad data such as Autocad input file. Also 3D image model is generated from 3D geometry and texture data, and is used to advertise the model in the internet environment. Consumers can see the object realistically from wanted views by rotating or zooming in the internet browsers with Scanbull spx plug-in. The spx format allows a compact saving of 3D objects to handle or download. There are many types of scan equipments such as laser scanners and photogrammetric scanners. Line or point scan methods by laser can generate precise 3D geometry but cannot obtain color textures in general. Reversely, 3D image modeling with photogrammetry can generate not only geometries but also textures from associated polygons. We got various 3D image models and introduced the process of getting 3D image model of an internet-connected watchdog robot.

  • PDF