• Title/Summary/Keyword: 3D digital image

Search Result 857, Processing Time 0.034 seconds

An Analysis of 3D Mesh Accuracy and Completeness of Combination of Drone and Smartphone Images for Building 3D Modeling (건물3D모델링을 위한 드론과 스마트폰영상 조합의 3D메쉬 정확도 및 완성도 분석)

  • Han, Seung-Hee;Yoo, Sang-Hyeon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.69-80
    • /
    • 2022
  • Drone photogrammetry generally acquires images vertically or obliquely from above, so when photographing for the purpose of three-dimensional modeling, image matching for the ground of a building and spatial accuracy of point cloud data are poor, resulting in poor 3D mesh completeness. Therefore, to overcome this, this study analyzed the spatial accuracy of each drone image by acquiring smartphone images from the ground, and evaluated the accuracy improvement and completeness of 3D mesh when the smartphone image is not combined with the drone image. As a result of the study, the horizontal (x,y) accuracy of drone photogrammetry was about 1/200,000, similar to that of traditional photogrammetry. In addition, it was analyzed that the accuracy according to the photographing method was more affected by the photographing angle of the object than the increase in the number of photos. In the case of the smartphone image combination, the accuracy was not significantly affected, but the completeness of the 3D mesh was able to obtain a 3D mesh of about LoD3 that satisfies the digital twin city standard. Therefore, it is judged that it can be sufficiently used to build a 3D model for digital twin city by combining drone images and smartphones or DSLR images taken on the ground.

Terrain Classification Using Three-Dimensional Co-occurrence Features (3차원 Co-occurrence 특징을 이용한 지형분류)

  • Jin Mun-Gwang;Woo Dong-Min;Lee Kyu-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Texture analysis has been efficiently utilized in the area of terrain classification. In this application features have been obtained in the 2D image domain. This paper suggests 3D co-occurrence texture features by extending the concept of co-occurrence to 3D world. The suggested 3D features are described using co-occurrence histogram of digital elevations at two contiguous position as co-occurrence matrix. The practical construction of co-occurrence matrix limits the number of levels of digital elevation. If the digital elevation is quantized into the number of levels over the whole DEM(Digital Elevation Map), the distinctive features can not be obtained. To resolve the quantization problem, we employ local quantization technique which preserves the variation of elevations. Experiments has been carried out to verify the proposed 3D co-occurrence features, and the addition of the suggested features significantly improves the classification accuracy.

3D Medical Image Data Watermarking Applied to Healthcare Information Management System (헬스케어 정보 관리 시스템의 3D 의료영상 데이터 다중 워터마킹 기법)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.870-881
    • /
    • 2009
  • The rapid development of healthcare information management for 3D medical digital library, 3D PACS and 3D medical diagnosis has addressed security issues with medical IT technology. This paper presents multiple 3D medical image data for protection, authentication, indexing and diagnosis information hiding applied to healthcare information management. The proposed scheme based on POCS watermarking embeds the robust watermark for doctor's digital signature and information retrieval indexing key to the distribution of vertex curvedness and embeds the fragile watermark for diagnosis information and authentication reference message to the distance difference of vertex. The multiple embedding process designs three convex sets for robustness, fragileness and invisibility and projects 3D medical image data onto three convex sets alternatively and iteratively. Experimental results confirmed that the proposed scheme has the robustness and fragileness to various 3D geometric and mesh modifiers at once.

The Digital Image Acquisition of High-resolution by Enhancing the Multiple Images (다중영상 강화에 의한 고해상도 수치영상획득)

  • 강준묵;오원진;엄대용
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 1999
  • The study about quantitative or qualitative analysis of object using digital image is being progressed actively with the development of the image medium and image process technique. But, it is very high that the dependency about image acquisition system of high resolution for image analysis of high accuracy and it is a equipment of high-price. In this study, I extracted the optimum condition of image enhancement by analyzing and enhancing the multiple images which were acquired by system of low-price. And I carried out the analysis of 3D accuracy by being applied the optimum condition of image enhancement. In the result of analysis of average 3D positioning error using law image and enhanced image which is acquired by applying the optimum condition of image enhancement, I could obtain the progressed accuracy about 10% on the enhanced image.

  • PDF

Analysis of X-ray image qualities-accuracy of shape and clearness of image-using X-ray digital tomosynthesis

  • Roh, Young Jun;Kang, Sung Taek;Kim, Hyung Cheol;Kim, Sung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.572-576
    • /
    • 1997
  • X-ray laminography and DT(digital tomosynthesis) that can form a cross-sectional image of 3-D objects promise to be good solutions for inspecting interior defects of industrial products. The major factors of the digital tomosynthesis that influence on the quality of x-ray cross-sectional images are also discussed. The quality of images acquired from the DT system varies according to image synthesizing methods, the number of images used in image synthesizing, and X-ray projection angles. In this paper, a new image synthesizing method named 'log-root method' is proposed to get clear and accurate cross-sectional images, which can reduce both artifact and blurring generated by materials out of focal plane. To evaluate the quality of cross-sectional images, two evaluating criteria: (1) shape accuracy and (2) clearness in the cross-sectional image are defined. Based on this criteria, a series of simulations were performed, and the results show the superiority of the new synthesizing method over the existing ones such as averaging and minimum method.

  • PDF

The Education Methodology for the Production of Stereoscopic 3D Image Contents -Focusing on University Education (3D 입체영상 콘텐츠 제작 교육 방법론 -대학교육을 중심으로)

  • Park, SungDae;Lee, Junsang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2045-2053
    • /
    • 2016
  • Many research institutes have studied 3D stereoscopic images since the release of 3D stereoscopic film 'Avatar' in 2009. Universities have conducted research on and studied 3D stereoscopic image in various ways, and even university curriculums have adopted 3D stereoscopic image production courses. However, universities face many difficulties in purchasing expensive equipment including cameras and rigs for 3D stereoscopic image contents production training. This paper addresses the 3D stereoscopic image content production curriculum using software in university. A practical training course was carried out based on the theoretical contents and theories that must be dealt with in 3D stereoscopic image contents production curriculum. As a result, students could understand the principles of 3D stereoscopic image production and produce various 3D stereoscopic images using various software applications. In this parer, proper instructional methods for 3D stereoscopic image contents production in university are discussed through this production course.

Image Conversion in Digital Design (디지털디자인에서 이미지의 變換)

  • Kim, Hun
    • Archives of design research
    • /
    • v.15 no.1
    • /
    • pp.309-318
    • /
    • 2002
  • An expression of image in visual communication design traditionally has a dose relationship with the mechanical part of several expression media. Especially, an image conversion becomes easter by converging various forms of image such as a pictorial expression, a drawing up a plan, an optical expression and a reflected image into digital data in the image expression using digital mode. In addition, synthesis between various forms of visual ,images is activated by the integration of all expression media into digital mode and thus the extent of the image expression becomes diversified. Moreover, there is a tendency that a various dimensional expression such as 3D and 4D is generalized in the image expression of digital design. A partial or whole image conversion has often occurred during the generalization process of several image forms. Such conversion summarized into two factors, a formative side and a technical side. We described the existing pictorial expression as a formative side, an optical expression as a photography, a materialization of image conversion theory of computer graphic image conversion according to data form as a technical side and specific content according to dimension. We summarized objective and demonstrative resets through a simple simulation using a computer for the contents required a technical and qualitative measure and presented an application program of the particular results from the study to the visual communication design work by a case.

  • PDF

Construction of 3D Geospatial Information for Development and Safety Management of Open-pit Mine (노천광산 개발 및 안전관리를 위한 3차원 지형정보 구축 및 정확도 분석)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Open pit mines for limestone mining require rapid development of technologies and efforts to prevent safety accidents due to rapid deterioration of the slope due to deforestation and rapid changes in the topography. Accurate three-dimensional spatial information on the terrain should be the basis for reducing environmental degradation and safe development of open pit mines. Therefore, this study constructed spatial information about open pit mine using UAV(Unmanned Aerial Vehicle) and analyzed its utility. images and 3D laser scan data were acquired using UAV, and digital surface model, digital elevation model and ortho image were generated through data processing. DSM(Digital Surface Model) and ortho image were constructed using image obtained from UAV. Trees were removed using 3D laser scan data and numerical elevation models were produced. As a result of the accuracy analysis compared with the check points, the accuracy of the digital surface model and the digital elevation model was about 11cm and 8cm, respectively. The use of three-dimensional geospatial information in the mineral resource development field will greatly contribute to effective mine management and prevention of safety accidents.

Optical Scanning Holography - A Review of Recent Progress

  • Poon, Ting-Chung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.406-415
    • /
    • 2009
  • Optical scanning holography (OSH) is a distinct digital holographic technique in that real-time holographic recording a three-dimensional (3-D) object can be acquired by using two-dimensional active optical heterodyne scanning. Applications of the technique so far have included optical scanning cryptography, optical scanning microscopy, 3-D pattern recognition, 3-D holographic TV, and 3-D optical remote sensing. This paper reviews some of the recent progress in OSH. Some possible further works are also discussed.

Digital Watermarking Algorithm for Multiview Images Generated by Three-Dimensional Warping

  • Park, Scott;Kim, Bora;Kim, Dong-Wook;Seo, Youngho
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2015
  • In this paper, we propose a watermarking method for protecting the ownership of three-dimensional (3D) content generated from depth and texture images. After selecting the target areas to preserve the watermark by depth-image-based rendering, the reference viewpoint image is moved right and left in the depth map until the maximum viewpoint change is obtained and the overlapped region is generated for marking space. The region is divided into four subparts and scanned. After applying discrete cosine transform, the watermarks are inserted. To extract the watermark, the viewpoint can be changed by referring to the viewpoint image and the corresponding depth image initially, before returning to the original viewpoint. The watermark embedding and extracting algorithm are based on quantization. The watermarked image is attacked by the methods of JPEG compression, blurring, sharpening, and salt-pepper noise.