• Title/Summary/Keyword: 3D conformal plan

Search Result 37, Processing Time 0.032 seconds

Evaluations and Comparisons of Body Surface Doses during Breast Cancer Treatment by Tomotherapy and LINAC Radiotherapy Devices

  • Lee, Hyun-Jik;Bae, Sun-Hyun;Cho, Kwang Hwan;Jeong, Jae-Hong;Kwon, Su-Il;Lee, Kil-Dong
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.218-225
    • /
    • 2017
  • Effects on skin caused by the dose from linear accelerator (LINAC) opposing portal irradiation and TomoDirect 3-D modeling treatment according to the radiation devices and treatment methods were measured, and a comparative analysis was performed. Two groups of 10 patients each were created and measurements were carried out using an optically stimulated luminescence dosimeter. These patients were already receiving radiation treatment in the hospital. Using the SPSS statistical program, the minimum and maximum average standard deviations of the measured skin dose data were obtained. Two types of treatment method were selected as independent variables; the measured points and total average were the dependent variables. An independent sample T-test was used, and it was checked whether there was a significance probability between the two groups. The average of the measured results for the LINAC opposing portal radiation was 117.7 cGy and PDD 65.39% for the inner breast, 144.7 cGy and PDD 80.39% for the outer breast, 143.2 cGy and PDD 79.56% for the upper breast, 151.4 cGy and PDD 84.11% for the lower breast, 149.6 cGy and PDD 83.11% for the axilla, and 141.32 cGy and PDD 78.51% for the total average. In contrast, for TomoDirect 3-D conformal radiotherapy, the corresponding measurement values were 137.6 cGy and PDD 76.44%, 152.3 cGy and PDD 84.61%, 148.6 cGy and PDD 82.56%, 159.7 cGy and PDD 88.72%, and 148.6 cGy PDD 82.56%, respectively, and the total average was 149.36 cGy and PDD 82.98%. To determine if the difference between the total averages was statistically significant, the independent sample T-test of the SPSS statistical program was used, which indicated that the P-value was P=0.024, which was 0.05 lower than the significance level. Thus, it can be understood that the null hypothesis can be dismissed, and that there was a difference in the averages. In conclusion, even though the treatment dose was similar, there could be a difference in the dose entering the body surface from the radiation treatment plan; however, depending on the properties of the treatment devices, there is a difference in the dose affecting the body surface. Thus, the absorbed dose entering the body surface can be high. During breast cancer radiotherapy, radiation dermatitis occurs in almost all patients. Most patients have a difficult time while undergoing treatment, and therefore, when choosing a radiotherapy treatment method, minimizing radiation dermatitis is an important consideration.

The Feasibility Study of MRI-based Radiotherapy Treatment Planning Using Look Up Table (Look Up Table을 이용한 자기공명영상 기반 방사선 치료계획의 타당성 분석 연구)

  • Kim, Shin-Wook;Shin, Hun-Joo;Lee, Young-Kyu;Seo, Jae-Hyuk;Lee, Gi-Woong;Park, Hyeong-Wook;Lee, Jae-Choon;Kim, Ae-Ran;Kim, Ji-Na;Kim, Myong-Ho;Kay, Chul-Seung;Jang, Hong-Seok;Kang, Young-Nam
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.237-242
    • /
    • 2013
  • In the intracranial regions, an accurate delineation of the target volume has been difficult with only the CT data due to poor soft tissue contrast of CT images. Therefore, the magnetic resonance images (MRI) for the delineation of the target volumes were widely used. To calculate dose distributions with MRI-based RTP, the electron density (ED) mapping concept from the diagnostic CT images and the pseudo CT concept from the MRI were introduced. In this study, the look up table (LUT) from the fifteen patients' diagnostic brain MRI images was created to verify the feasibility of MRI-based RTP. The dose distributions from the MRI-based calculations were compared to the original CT-based calculation. One MRI set has ED information from LUT (lMRI). Another set was generated with voxel values assigned with a homogeneous density of water (wMRI). A simple plan with a single anterior 6MV one portal was applied to the CT, lMRI, and wMRI. Depending on the patient's target geometry for the 3D conformal plan, 6MV photon beams and from two to five gantry portals were used. The differences of the dose distribution and DVH between the lMRI based and CT-based plan were smaller than the wMRI-based plan. The dose difference of wMRI vs. lMRI was measured as 91 cGy vs. 57 cGy at maximum dose, 74 cGt vs. 42 cGy at mean dose, and 94 cGy vs. 53 at minimum dose. The differences of maximum dose, minimum dose, and mean dose of the wMRI-based plan were lower than the lMRI-based plan, because the air cavity was not calculated in the wMRI-based plan. These results prove the feasibility of the lMRI-based planning for brain tumor radiation therapy.

Evaluation of Setup Uncertainty on the CTV Dose and Setup Margin Using Monte Carlo Simulation (몬테칼로 전산모사를 이용한 셋업오차가 임상표적체적에 전달되는 선량과 셋업마진에 대하여 미치는 영향 평가)

  • Cho, Il-Sung;Kwark, Jung-Won;Cho, Byung-Chul;Kim, Jong-Hoon;Ahn, Seung-Do;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.81-90
    • /
    • 2012
  • The effect of setup uncertainties on CTV dose and the correlation between setup uncertainties and setup margin were evaluated by Monte Carlo based numerical simulation. Patient specific information of IMRT treatment plan for rectal cancer designed on the VARIAN Eclipse planning system was utilized for the Monte Carlo simulation program including the planned dose distribution and tumor volume information of a rectal cancer patient. The simulation program was developed for the purpose of the study on Linux environment using open source packages, GNU C++ and ROOT data analysis framework. All misalignments of patient setup were assumed to follow the central limit theorem. Thus systematic and random errors were generated according to the gaussian statistics with a given standard deviation as simulation input parameter. After the setup error simulations, the change of dose in CTV volume was analyzed with the simulation result. In order to verify the conventional margin recipe, the correlation between setup error and setup margin was compared with the margin formula developed on three dimensional conformal radiation therapy. The simulation was performed total 2,000 times for each simulation input of systematic and random errors independently. The size of standard deviation for generating patient setup errors was changed from 1 mm to 10 mm with 1 mm step. In case for the systematic error the minimum dose on CTV $D_{min}^{stat{\cdot}}$ was decreased from 100.4 to 72.50% and the mean dose $\bar{D}_{syst{\cdot}}$ was decreased from 100.45% to 97.88%. However the standard deviation of dose distribution in CTV volume was increased from 0.02% to 3.33%. The effect of random error gave the same result of a reduction of mean and minimum dose to CTV volume. It was found that the minimum dose on CTV volume $D_{min}^{rand{\cdot}}$ was reduced from 100.45% to 94.80% and the mean dose to CTV $\bar{D}_{rand{\cdot}}$ was decreased from 100.46% to 97.87%. Like systematic error, the standard deviation of CTV dose ${\Delta}D_{rand}$ was increased from 0.01% to 0.63%. After calculating a size of margin for each systematic and random error the "population ratio" was introduced and applied to verify margin recipe. It was found that the conventional margin formula satisfy margin object on IMRT treatment for rectal cancer. It is considered that the developed Monte-carlo based simulation program might be useful to study for patient setup error and dose coverage in CTV volume due to variations of margin size and setup error.

Evaluating the Dosimetric Characteristics of Radiation Therapies according to Head Elevation Angle for Head and Neck Tumors (두 경부 종양 치료 시 거상각도에 따른 치료기법 별 선량특성 평가)

  • Cheon, Geum-Seong;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2016
  • Since the head and neck region is densely located with organs at risk (OAR), OAR-sparing is an important issue in the treatment of head and neck cancers. This study-in which different treatment plans were performed varying the head tilt angle on brain tumor patients-investigates the optimal head elevation angle for sparing normal organs (e.g. the hippocampus) and further compares the dosimetric characteristics of different types of radiation equipment. we performed 3D conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and tomotherapy on 10 patients with brain tumors in the frontal lobe while varying the head tilt angle of patients to analyze the dosimetric characteristics of different therapy methods. In each treatment plan, 95% of the tumor volume was irradiated with a dose of 40 Gy in 10 fractions. The step and shoot technique with nine beams was used for IMRT, and the same prescription dose was delivered to the tumor volume for the 3D-CRT and tomotherapy plans. The homogeneity index, conformity index, and normal tissue complication probability (NTCP) were calculated. At a head elevation angle of $30^{\circ}$, conformity of the isodose curve to the target increased on average by 53%, 8%, and 5.4%. In 3D-CRT, the maximum dose received by the brain stem decreased at $15^{\circ}$, $30^{\circ}$, and $40^{\circ}$, compared to that observed at $0^{\circ}$. The NTCP value of the hippocampus observed in each modality was the highest at a head and neck angle of $0^{\circ}$ and the lowest at $30^{\circ}$. This study demonstrates that the elevation of the patients' head tilt angle in radiation therapy improves the target region's homogeneity of dose distribution by increasing the tumor control rate and conformity of the isodose curve to the target. Moreover, the study shows that the elevation of the head tilt angle lowers the NTCP by separating the tumor volume from the normal tissues, which helps spare OARs and reduce the delivered dose to the hippocampus.

Bladder volume variations of cervical cancer patient in radiation therapy using ultrasonography (초음파검사를 이용한 자궁경부암 환자의 방사선치료 시 방광 체적 변화)

  • Gong, Jong Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • Purpose : The bladder volume change was measured using ultrasonography for helping decrease the side effects and other organ variations in the location of radiation therapy for cervical cancer patients. An experiment was performed targeting patients who were treated with radiation therapy at PNUH within the period from September to December 2015. Materials and Methods : To maintain the bladder volume, each patient was instructed to drink 500 cc water before and after CT simulation, 60 minutes before the dry run. Also, the bladder volume was measured in each patient CT scan, and a 3D conformal therapy plan was designed. The bladder volumes measured before and after the CT simulation, dry run, and radiation treatment planning were compared and analyzed. Results : The average volume and average error of the bladder that were obtained from the measurement based on the CT scan images had the lowest standard deviation in the CT simulation. This means that the values that were obtained before and after the CT simulation were statistically relevant and correlative. Moreover, the bladder volume measured via ultrasonography was larger size, the average volume in the CT scan. But the values that were obtained Dry run and after the CT simulation were not statistically relevant. Conclusion : Drinking a certain amount of water helps a patient maintain his/her bladder volume for a dry run. Even then, it is difficult to maintain the bladder volume for the dry run. Also, whether or not the patients followed the directions for the dry run correctly is important.

  • PDF

Patterns of Failure According to Radiation Treatment Technique in the Parotid Gland Cancer (이하선암의 술후 방사선치료시 방사선치료 방법에 따른 치료 실패 양상 분석)

  • Lee Sang-Wook;Lee Chang-Geol;Keum Ki-Chang;Park Cheong-Soo;Choi Eun-Chang;Shin Hyun-Soo;Chu Sung-Sil;Lee Suk;Cho Kwang-Hwan;Suh Chang-Ok;Kim Gwi-Eon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.16 no.2
    • /
    • pp.167-171
    • /
    • 2000
  • Objectives: To compare the outcomes of treatment with a focus on the effectiveness of the two primary techniques of radiation used for treating parotid gland malignancies. Materials and Methods: A retrospective analysis of 70 patients with parotid gland cancer treated between 1981-1997. Radiation was delivered through an ipsilateral field of high energy electron and photon in 37 patients(52.9%). Two wedge paired photon was used to treat in 33 patients(47.1%). The median dose was 60 Gy, typically delivered at 1.8-2.0Gy per fraction. The median follow-up times for surviving patients was 60 months. Results: The overall and disease free 5 year survival rates were 71.6% and 69.5%, respectively. Wedge paired photon and photon-electron treatment disease tree 5 year survival rates were 61.1% and 80.5%, respectively. Overall local failure rate was 18.6%. Local failure rate of wedge paired photon technique was higher than that of mixed beam technique. Late complication rate was 37.1%, but most of them were mild grade. Conclusion: Techniques of radiation were associated with local control. The technique of using an ipsilateral field encompassing the parotid bed and treated with high energy electrons often mixed photons was effective with minimal severe late toxicity. To irradiate deep sited tumors, we consider 3-D conformal treatment plan for well encompassing the target volume.

  • PDF

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF